首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper proposes a novel inverter drive system to improve the input power factor of single‐phase diode rectifier. Conventional rectifiers need a high‐frequency switching device and a reactor to improve the input power factor. However, the proposed power converter does not need the switching device, electrolytic capacitor, or reactor. By making many ripples across the DC‐bus voltage, the input power factor can be improved. The proposed system consists of only a single‐phase diode rectifier, small film capacitor, three‐phase inverter, and motor. The proposed system adopts an interior permanent magnet (IPM) synchronous motor. The IPM motor is well known as a high‐efficiency motor and can realize field weakening. The basic ideas of the inverter control method are based on the following operations: the inverter's controlled synchronous with the DC‐bus ripple voltage by field‐weakening method, and direct active power feeding from the source side to the motor without smoothing the DC‐bus voltage. This paper describes that the proposed method can obtain an input power factor of 97.3% by experimental tests, and realizes the goals of small size and long life of the system. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(2): 66–73, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20047  相似文献   

2.
A single-phase high-efficiency flywheel (FW) uninterruptible power supply (UPS) with a rating of 5 kW and 200 V-1 min is described. The UPS has the following characteristics: (1) Batteryless system, which makes it maintenance free and results in long life (about three times that of a battery UPS). (2) Simple power conversion circuit of 3 arm configuration which can realize high efficiency and small size. The new flywheel unit, rotating at 1500 rpm, is vacuumized to eliminate windage losses by means of a zirconium getter pump. The flywheel rotor is made contact-free by a pivot bearing in high-speed states so as to assure long life. Charging or discharging of the mechanical energy of the FW is achieved by simply controlling the instantaneous slip frequency of the induction machine. The power conversion circuit consists of a three-arm bridge which has a common arm of the inverter and converter bridges. All control of the UPS is realized by simple programs in a single-chip floating point DSP. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 120(1): 77–84, 1997  相似文献   

3.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

4.
Power service interruptions cause problems in various facilities. Even an instantaneous voltage drop may give rise to serious problems in computer systems or electronic equipment. The uninterruptible power system (UPS) has been used to compensate for the power service interruptions. Also, the instantaneous voltage drop compensator using the electrolytic capacitor has been developed for the instantaneous voltage drop. Recently, the double‐layer capacitor has been considered as a new energy storage element. This capacitor has many advantages such as no maintenance, long lifetime, and quick charge/discharge characteristics with large current and it has higher energy density than the electrolytic capacitor. Therefore, we developed the UPS using the double‐layer capacitor. In this paper, the performance of the UPS using the double‐layer capacitor is shown by simulated and experimental results. Furthermore, the discharge characteristics of the double‐layer capacitors are investigated on the basis of the equivalent circuit including the capacitors and a voltage booster. Finally, the maximum load capacity to compensate is clarified for the system. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 154(3): 73–81, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20190  相似文献   

5.
In photovoltaic (PV) double‐stage grid‐connected inverters a high‐frequency DC–DC isolation and voltage step‐up stage is commonly used between the panel and the grid‐connected inverter. This paper is focused on the modeling and control design of DC–DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structure the output voltage of the DC–DC converter is regulated by the grid‐connected inverter. Therefore, the inverter may be considered as a constant voltage load for the development of the small‐signal model of the DC–DC converter, whereas the PV panel is considered as a negative resistance. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied. The theoretical analysis is corroborated by frequency response measurements on a 230 W experimental inverter working from a single PV panel. The inverter is based on a Flyback DC–DC converter operating in discontinuous conduction mode (DCM) followed by a PWM full‐bridge single‐phase inverter. The time response of the whole system (DC–DC + inverter) is also shown to validate the concept. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The AC–DC power supply for LED lighting application requires a long lifetime while maintaining high‐efficiency, high power factor and low cost. However, a typical design uses electrolytic capacitor as storage capacitor, which is not only bulky but also with short life span, thus hampering performance improvement of the entire LED lighting system. In this article, a SEPIC‐derived power factor correction topology is proposed as the first stage for driving multiple lighting LED lamps. Along with a relatively large voltage ripple allowable in a two‐stage design, the proposal of LED lamp driver is able to eliminate the electrolytic capacitor while maintaining high power factor and high efficiency. To further increase the efficiency of LED driver, we introduced and used the twin‐bus buck converter as the second‐stage current regulator with Pulse Width Modulation (PWM) dimming function. The basic operating principle and the deign consideration are discussed in detail. A 50‐W prototype has been built and tested to verify the proposal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The present paper introduces a single‐phase utility interactive inverter with a power decoupling function. In a conventional single‐phase inverter, power pulsation at twice the grid frequency appears in the input power. Hence, electrolytic capacitors having large capacitances have been connected to the DC input terminal to stabilize the input DC‐bus voltage. Because the lifetime of the electrolytic capacitor is relatively shorter than that of another component, the lifetime of the inverter is affected by the capacitor. In order to prevent such a problem, a novel single‐phase inverter circuit with an active power decoupling function is introduced. The pulsating power on the input DC‐bus line and the pulsated energy on the input DC capacitor is transferred to the energy in a small film capacitor. Hence, the extension of the inverter lifetime can be expected by substituting a small film capacitor for the large electrolytic capacitors. In addition, the loss in the power decoupling circuit is very small; hence, the reduction in the overall conversion efficiency of the inverter can be minimized. The effectiveness of the proposed method is verified using a 300 W experimental setup.  相似文献   

8.
在单相交流电源供电的电机驱动系统中,逆变器的直流母线侧通常并联一个几百或几千微法的电解电容,使用大电解电容稳定了母线电压,然而电解电容存在着寿命短,可靠性低等缺点。因此,本文提出了一种应用于无刷直流电机驱动系统的新型无电解电容功率变换器,该电路实现了电网侧与电机侧的功率解耦,通过功率平衡原理,使得电机侧的功率趋于稳定,并且具有寿命长,电网侧电能质量高等优点。同时,针对无刷直流电机换相转矩脉动大的缺点,在电机侧通过移相控制信号对转矩脉动进行了有效的抑制。最后,分别通过仿真和实验,验证了该无电解电容变换器及其控制算法的有效性。  相似文献   

9.
This paper deals with a 6.6‐kV transformerless STATCOM cascading multiple single‐phase H‐bridge PWM converters in each phase. The AC voltage of the STATCOM is almost sinusoidal, so that it requires no harmonic filter. Each converter is equipped with a capacitor and a voltage sensor on the DC side, which are electrically isolated from each other. The STATCOM has the capability of self‐starting and voltage‐balancing without any external power supply or equipment. Experiments using a three‐phase 200‐V, 10‐kVA laboratory system, along with computer simulations, are carried out to confirm the viability and effectiveness of the STATCOM. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 170(1): 55–64, 2010; Published online in Wiley InterScience ( www.interscience.wiley. com ). DOI 10.1002/eej.20822  相似文献   

10.
This article proposes an LED driver that consists of a ceramic‐capacitor‐input rectifier and a buck‐boost converter. The LED driver has an advantage of long life because it does not contain any electrolytic capacitors. However, the issue with electrolytic capacitor‐less LED driver is that the ripple of the smoothed voltage becomes large due to insufficient capacitance of the smoothing capacitor. The proposed method, which uses the discontinuous current mode of a buck‐boost converter, reduces the output current ripple under such conditions. Experimental results using a 5.7 W LED driver prototype demonstrate that the proposed method reduces the output current ripple and that the percent flicker becomes 4.4%, which is smaller than the recommended upper limit of 8%.  相似文献   

11.
12.
This paper proposes a configuration of a single‐phase voltage source inverter that features power decoupling capability. Generally, the converter connected to a single‐phase grid employs bulky dc link capacitors such as electrolytic capacitors in order to decouple the power ripple with twice the frequency of the power supply. The power ripple in the proposed circuit is compensated by an active buffer with small capacitors. In this paper, the fundamental operations of the proposed converter are confirmed by experimental results. From the experimental results, the output current total harmonic distortion (THD) is 3.51%, the ratio of the input current is 14.3%, and the output power factor is over 99%. In addition, the volume of the proposed circuit is reduced by 61% when the carrier frequency is 64 kHz compared to that with a carrier frequency of 16 kHz. Finally, from an evaluation of the power density using Pareto front curves, the proposed circuit achieves high power density in comparison with the conventional circuit.  相似文献   

13.
The purpose of this paper is to improve power conversion efficiency of a three‐phase voltage source type soft‐switching inverter with a single auxiliary resonant DC link (ARDCL) snubber. First, the operating principle of an ARDCL snubber discussed here is described. Second, this paper proposes an effective pulse pattern generation method of the zero voltage space vector of the three‐phase soft‐switching inverter using IGBTs or power modules that can reduce power losses in the ARDCL snubber treated here. In particular, a zero voltage holding interval in the DC rail busline of this three‐phase soft‐switching inverter is to be regulated according to the generation method of the zero voltage space vector. Third, the maximum modulation depth Mmax under the condition of correction of the instantaneous voltage space vector can be improved by using a new zero voltage space vector generation method. Finally, the feasible experimental results of this inverter are obtained confirming the operating characteristics such as power conversion actual efficiency, as well as conventional efficiency THD and RMS value of the balanced three‐phase output voltage for an experimentally built three‐phase voltage source type soft‐switching pulse modulated inverter using the latest IGBT modules and evaluated from the standpoint of practical applications in industry UPS and new energy systems. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(1): 89–99, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10234  相似文献   

14.
This paper proposes a new type of high-frequency dc/ac converter developed for flexible, compact and high-efficiency uninterruptible power supply (UPS) systems. The proposed dc/ac converter consists of a high-frequency inverter, a high-frequency transformer and a cycloconverter with a new voltage clamper. This cycloconverter is capable of being operated by both source-commutation and self-commutation (commutation by turning off the switching device). Consequently, by choosing between the two commutating methods, based on consideration and the internal voltage drop caused by commutating reactance, a compact and efficient UPS can be realized. The voltage clamper effectively reduces power loss of the conversion system. Fabrication of a 10-kVA high-frequency link-type dc/ac converter is described and its loss reduction effect is demonstrated.  相似文献   

15.
A novel high‐efficiency transformerless buck–boost DC–DC converter is proposed in this paper. The presented converter voltage gain is higher than that of the conventional boost, buck–boost, CUK, SEPIC and ZETA converters, and high voltage gain can be obtained with a suitable duty cycle. The voltage stress across the power switch is low. Hence, the low on‐state resistance of the power switch can be selected to decrease conduction loss of the switch and improve efficiency. The input current ripple in the presented converter is low. The principle of operation and the mathematical analyses of the proposed converter are explained. The validity of the presented converter is verified by the simulation results in PSCAD/EMTDC software and experimental results based on the prototype circuit with 250 W and 40 kHz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The large scale penetration of renewable energy resources has boosted the need of using improved control technique and modular power electronic converter structures for efficient and reliable operation of grid‐connected systems. This study investigates the performance of a grid‐connected 3‐phase 3‐level neutral‐point clamped voltage source inverter for renewable energy integration by using improved current control technique. For medium or high‐voltage grid interfacing, the multilevel inverter structure is generally used to reduce the voltage stress across the switching device as well as the harmonic distortion. The neutral‐point clamped voltage source inverter is controlled by using decoupling technique along with the proper grid synchronization via moving average filter–based phase‐locked loop. The moving average filter–based phase‐locked loop is used to reduce the delay in grid angle estimation under balanced as well as distorted grid conditions. A Lyapunov‐based approach for analysing the stability of the system has also been discussed. In this study, the hardware‐in‐loop (HIL) simulation of the control algorithm and the grid synchronization technique is realized using Virtex‐6 FPGA ML605 evaluation kit. The performance of the system is analyzed by conducting a time‐domain simulation in the Matlab/Simulink platform and its performance is examined in the HIL environment. The simulation and the hardware cosimulation results are presented to validate the effectiveness of the proposed control scheme.  相似文献   

17.
In this paper, a single‐stage integrated bridgeless AC/DC converter is proposed. As compared to its counterpart that is composed of totem‐pole boost power factor correction (PFC) cascade fly‐back DC/DC converter, the studied circuit has less components number while overcoming the limits of the totem‐pole type. Thus, it is suitable to the low‐power LED lighting applications. Furthermore, when both PFC inductors Lb and magmatic inductance Lm of the transformer TR1 operate at discontinuous current mode, the bus voltage vCB can be used to decouple the ac input and constant dc output power. Thus, the approach of increasing bus voltage ripple is employed to eliminate electrolytic capacitors and obtain long operation lifetime. Additionally, it is able to be compatible with our studied twin‐bus configuration for increasing the overall efficiency. A 50‐W hardware prototype has been designed, fabricated, and tested in the laboratory to verify the proposed converter validity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Recent progress in power electronics technology makes it possible to consider applying self‐commutated converters using gate turn‐off thyristors (GTOs) to HVDC transmission systems. Since the self‐commutated converter can be operated stably without depending on ac‐side voltage, the magnitude and the phase angle of the converter output voltage can be controlled independently. Therefore, this type of converter will improve voltage stability at its ac side. On the other hand, shaft torsional oscillation of a thermal power plant caused by the interaction between the shaft‐generator system and the control system of the self‐commutated converter is still an open problem. In this paper, a linearized model for eigenvalue analysis of a power system, including HVDC interconnection with self‐commutated converters, is described to analyze the effect of the self‐commutated converter on the shaft torsional oscillation of a thermal power plant. Then, numerical results from the eigenvalue analysis of the shaft torsional oscillation are presented. Results obtained by the frequency response method are also reported. The numerical results make it clear that parameter regions of DC‐AVR and ACR control systems of self‐commutated converters exist where the shaft torsional oscillation may be caused. © 1999 Scripta Technica, Electr Eng Jpn, 128(4): 25–37, 1999  相似文献   

19.
This paper presents a protection strategy for the semiconductor switches in an electrolytic capacitorless converter. The proposed protection strategy is capable of protecting the semiconductor switches from overvoltage breakdown caused by the regenerative energy flowing from the load to the grid after the source lines are disconnected by the grid interruption. The energy stored in the machine inductance also may result in excessive DC-bus overvoltage due to the small DC capacitance in the electrolytic capacitorless converter. According to the proposed algorithm, the energy in the q-axis inductance is transferred to the d-axis inductance in the rotor reference frame while the DC-bus voltage is maintained within an allowable range by the proposed DC-bus voltage regulation during the grid (or source) interruption. The proposed protection strategy was verified by the experiments with an elevator system with a 10.8-kW 380-V interior permanent-magnet (IPM) hoist machine.  相似文献   

20.
This paper proposes a new method of damping harmonic resonance in the DC link of a large‐capacity rectifier‐inverter system, such as in rapid‐transit railways. A voltage‐source PWM converter is connected in series to the DC capacitor of the rectifier through a matching transformer, acting as a damping resistor to the DC capacitor current. No filters are needed to extract harmonic components from the DC capacitor current. This results in a quick response and highly stable damping. The relationship between the control gain of the PWM converter and the required rating is theoretically discussed. We show that the required rating is less than one‐thousandth of that previously proposed. In particular, regenerating the power consumed by the PWM converter is very important because of the large power in practical systems. Normally, an additional PWM inverter is connected to the DC bus of the PWM converter to regenerate the consumed power. The additional inverter regenerates the DC power to the AC source through a transformer. This method, however, makes the damping circuit complex, thus the proposed method for the DC‐link harmonic resonance is less practicable. In this paper, a simple and novel scheme that utilizes the DC‐link voltage of the rectifier as a DC source for the PWM converter is proposed. The excellent practicability of the proposed damping method with the novel regenerating scheme is confirmed using digital computer simulation. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 144(2): 53–62, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10172  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号