首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new colour space, named ULAB, is developed. It is derived from the CIELAB colour space and can be converted to and from CIELAB. Unlike modified CIELAB colour‐difference formulae, ULAB incorporates corrections for lightness, chroma, and hue differences into its colour coordinates. For the small magnitude colour difference data, it shows the performance as good as more complicated formulae such as CIEDE2000. ULAB shows another chance of developing a colour space approximately more uniform than CIELAB. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 17–29, 2015  相似文献   

2.
Most of the colour‐difference formulae were developed to fit data sets having a limited range of colour‐difference magnitudes. Hence, their performances are uncertain when applying them to a range of colour differences from very small to very large colour differences. This article describes an experiment including three parts according to the colour‐difference magnitudes: large colour difference (LCD), small colour difference (SCD), and threshold colour difference (TCD) corresponding to mean ΔE values of 50.3, 3.5, and 0.6, respectively. Three visual assessment techniques were used: ratio judgement, pair comparison, and threshold for LCD, SCD, and TCD experiments, respectively. Three data sets were used to test six colour‐difference formulae and uniform colour spaces (CIELAB, CIE94, CIEDE2000, CAM02‐SCD, CAM02‐UCS, and CAM02‐LCD). The results showed that all formulae predicted visual results with great accuracy except CIELAB. CIEDE2000 worked effectively for the full range of colour differences, i.e., it performed the best for the TCD and SCD data and reasonably well for the LCD data. The three CIECAM02 based colour spaces gave quite satisfactory performance. © Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

3.
In an earlier article the authors related visually‐ scaled large colour differences to ΔE* values calculated using four colour‐difference formulae. All four metrics yielded linear regressions from plots of visual colour difference against ΔE*, and ΔE gave the best linear fit, but the correlations were rather low. In an effort to clarify matters, the previous investigation is expanded to include data not hitherto examined. The link between visual colour difference and ΔE* colour metrics is further explored in terms of a power law relationship over a wide range of lightness, hue, and chroma variations within CIELAB colour space. It is shown that power‐law fits are superior to linear regressions in all cases, although correlations over large regions of the colour space are not very high. Partitioning of the experimental results to give reduced data sets in smaller regions is shown to improve correlations markedly, using power‐law fits. Conclusions are drawn concerning the uniformity of CIELAB space in the context of both linear and power‐law behavior. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 116–122, 2000  相似文献   

4.
The texture effect on visual colour difference evaluation was investigated in this study. Five colour centers were selected and textured colour pairs were generated using scanned textile woven fabrics and colour‐mapping technique. The textured and solid colour pairs were then displayed on a characterized cathode ray tube (CRT) monitor for colour difference evaluation. The colour difference values for the pairs with texture patterns are equal to 5.0 CIELAB units in lightness direction. The texture level was represented by the half‐width of histogram, which is called texture strength in this study. High correlation was found between texture strength and visual colour difference for textured colour pairs, which indicates that an increasing of 10 units of texture strength in luminance would cause a decreasing of 0.25 units visual difference for the five colour centers. The ratio of visual difference between textured and solid colour pairs also indicates a high parametric effect of texture. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 341–347, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.  相似文献   

5.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

6.
The formulation of a metric to provide numbers that correlate with visually perceived colour differences has proved a very difficult task. Most early experimental work was concerned with just-perceptible colour differences. Later the concept of perceptibility was expanded to acceptability, it being argued that many industrial tolerances were larger than just-perceptible. This led naturally to the concept of large colour differences and the question as to whether the current CIE colour-difference formulae, specified as appropriate for just-perceptible differences, can be applied to larger differences than those concerned with, for instance, colour matches experienced in the fabric dyeing industry. This article investigates the application of four colour-difference formulae to visual scaling of large colour differences between photographically prepared reflection colour samples at approximately constant lightness. It is shown that the scaling of colour differences depends on the directions of hue and chroma differences of a test sample when compared with a reference. It is also shown that, of the four candidate colour-difference metrics, the modified CIE 1976 L*a*b* colour difference, referred to as CIE1994 or , correlates best with visual scaling. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 298–307, 1997  相似文献   

7.
8.
This experiment was carried out to investigate some viewing parameters affecting perceived colour differences. It was divided into eight phases. Each phase was conducted under a different set of experimental conditions including separations, neutral backgrounds, and psychophysical methods. Seventy‐five wool sample pairs were prepared corresponding to five CIE colour centers. The mean colour difference was three CIELAB units. Each pair was assessed by a panel of 21 observers using both the gray scale and pair comparison psychophysical methods. The assessments were carried out using the three different backgrounds (white, mid‐gray, and black) and a hairline gap between the samples. Assessments on the gray background were repeated using a large (3‐inch) gap between the samples. It was found that the visual results obtained from both psychophysical methods gave very similar results. The parametric effect was small, i.e., the largest effect was only 14% between the white and gray background conditions. These visual data were also used to test four colour‐difference formulae: CIELAB, CMC, BFD, and CIE94. The results showed that three advanced colour‐difference formulae performed much better than CIELAB. There was a good agreement between the current results and those from earlier studies. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 331–343, 1999  相似文献   

9.
This work is concerned with the prediction of visual colour difference between pairs of palettes. In this study, the palettes contained five colours arranged in a horizontal row. A total of 95 pairs of palettes were rated for visual difference by 20 participants. The colour difference between the palettes was predicted using two algorithms, each based on one of six colour-difference formulae. The best performance (r2 = 0.86 and STRESS = 16.9) was obtained using the minimum colour-difference algorithm (MICDM) using the CIEDE2000 equation with a lightness weighing of 2. There was some evidence that the order (or arrangement) of the colours in the palettes was a factor affecting the visual colour differences although the MICDM algorithm does not take order into account. Application of this algorithm is intended for digital design workflows where colour palettes are generated automatically using machine learning and for comparing palettes obtained from psychophysical studies to explore, for example, the effect of culture, age, or gender on colour associations.  相似文献   

10.
A grey‐scale psychophysical experiment was carried out for evaluating colour differences using printed colour patches. In total, 446 pairs of printed samples were prepared surrounding 17 colour centers recommended by the CIE with an average δE of 3 units. Each pair was assessed 27 times by nine observers. The visual results were used to test some selected more advanced colour‐difference formulae and uniform colour spaces. The results showed that CIELAB and OSA performed the worst, and the advanced formulae and spaces gave quite satisfactory performance such as CIEDE2000, CIE94, DIN99d, CAM02‐UCS, and OSA‐GP‐Eu. The colour discrimination ellipses were used to compare with those of the earlier studies. The results showed that they agreed well with each other. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

11.
Psychophysical experiments of color discrimination threshold and suprathreshold color‐difference comparison were carried out with CRT‐generated stimuli using the interleaved staircase and constant stimuli methods, respectively. The experimental results ranged from small (including threshold) to large color difference at the five CIE color centers, which were satisfactorily described by chromaticity ellipses as equal color‐difference contours in the CIELAB space. The comparisons of visual and colorimetric scales in CIELAB unit and threshold unit indicated that the colorimetric magnitudes typically were linear with the visual ones, though with different proportions in individual directions or color centers. In addition, color difference was generally underestimated by the Euclidean distance in the CIELAB space, whereas colorimetric magnitude was perceptually underestimated for threshold unit, implying the present color system is not a really linear uniform space. Furthermore, visual data were used to test the CIELAB‐based color‐difference formulas. In their original forms CIEDE2000 performed a little better than CMC, followed by CIELAB, and with CIE94 showing the worst performance for the combined data set under the viewing condition in this study. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 349–359, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10081  相似文献   

12.
The functional relation of visual to colorimetric scaling of small color differences is needed for a realistic interpretation of the perceptual magnitude of a measured color difference. Linearity is usually assumed and differences are expressed in threshold units without adjustment. an experimental plan is described that provides for the application of gray-scale assessment to visual judgments under controlled parameters. Gray scale and test colors were produced from a two-component acrylic lacquer system. A green color center (CIE green) was chosen for a first test with color differences extending from the center in the directions of hue, saturation/chroma, and lightness in steps ranging from -5 to + 5 thresholds. Thirteen observers made 4 judgments of each of 78 color-difference pairs. the resulting scales were typically linear but increasing less steeply than threshold stepping; however, Fstatistics showed some inhomogeneous effects. Scales along the main color directions tended slightly to subadditivity. the vector model of color difference better predicted the magnitude of diagonal jumps between two color directions than did the city-block model. Relations to some recent color-difference formulae were studied and the CIE TCI-29 formula was found to be a good predictor for this color center. © 1995 John Wiley & Sons. Inc.  相似文献   

13.
Simultaneous contrast effects on lightness and hue in surface colours were investigated. Test colours, surrounded by induction colours, were matched by colours surrounded by neutral gray. The matching colours were selected from a series of samples that varied in either lightness or hue respectively. The lightness experiments were carried out by a panel of 20 observers on 135 test/induction colour combinations. The hue experiments were conducted on 51 test/induction colour combinations by a panel of eight observers. The lightness of the test colour was found to decrease linearly with the lightness of the induction colour, regardless of the hue of the induction colour. The magnitude of the lightness contrast effect in fabric colours was found to be about one‐quarter of that found in CRT display colours in a previous study. The hue contrast effect found in this study followed the opponent‐colour theory. Two distinctly different regions could be identified when the hue difference was plotted against hue‐angle difference between the induction colour and the test colour. The slope of the line in the region where the hue of the induction colour is close to the test colour was much larger than the slope in the other region, indicating that the hue contrast effect was more obvious when the induction colour was close to the test colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 55–64, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20285  相似文献   

14.
This study investigates colour harmony in visual experiments in order to develop a new quantitative colour harmony model. On the basis of new experimental results, colour harmony formulae were developed to predict colour harmony from the CIECAM02 hue, chroma, and lightness correlates of the members of two‐ or three‐colour combinations. In the experiments, observers were presented two‐ and three‐colour combinations displayed on a well‐characterized CRT monitor in a dark room. Colour harmony was estimated visually on an 11 category scale from ?5 (meaning completely disharmonious) to +5 (meaning completely harmonious), including 0 as the neutral colour harmony impression. From these results, mathematical models of colour harmony were developed. The visual results were also compared with classical colour harmony theories. Two supplementary experiments were also carried out: one of them tested the main principles of colour harmony with real Munsell colour chips, and another one compared the visual rating of the new models with existing colour harmony theories. © 2009 Wiley Periodicals, Inc. Col Res Appl, 2010.  相似文献   

15.
Psychophysical experiments were conducted in the UK, Taiwan, France, Germany, Spain, Sweden, Argentina, and Iran to assess colour emotion for two‐colour combinations using semantic scales warm/cool, heavy/light, active/passive, and like/dislike. A total of 223 observers participated, each presented with 190 colour pairs as the stimuli, shown individually on a cathode ray tube display. The results show consistent responses across cultures only for warm/cool, heavy/light, and active/passive. The like/dislike scale, however, showed some differences between the observer groups, in particular between the Argentinian responses and those obtained from the other observers. Factor analysis reveals that the Argentinian observers preferred passive colour pairs to active ones more than the other observers. In addition to the cultural difference in like/dislike, the experimental results show some effects of gender, professional background (design vs. nondesign), and age. Female observers were found to prefer colour pairs with high‐lightness or low‐chroma values more than their male counterparts. Observers with a design background liked low‐chroma colour pairs or those containing colours of similar hue more than nondesign observers. Older observers liked colour pairs with high‐lightness or high‐chroma values more than young observers did. Based on the findings, a two‐level theory of colour emotion is proposed, in which warm/cool, heavy/light, and active/passive are identified as the reactive‐level responses and like/dislike the reflective‐level response. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

16.
Visual evaluation experiments of color discrimination threshold and suprathreshold color‐difference comparison were carried out using CRT colors based on the psychophysical methods of interleaved staircase and constant stimuli, respectively. A large set of experimental data was generated ranged from threshold to large suprathreshold color difference at the five CIE color centers. The visual data were analyzed in detail for every observer at each visual scale to show the effect of color‐difference magnitude on the observer precision. The chromaticity ellipses from this study were compared with four previous published data, of CRT colors by Cui and Luo, and of surface colors by RIT‐DuPont, Cheung and Rigg, and Guan and Luo, to report the reproducibility of this kind of experiment using CRT colors and the variations between CRT and surface data, respectively. The present threshold data were also compared against the different suprathreshold data to show the effect of color‐difference scales. The visual results were further used to test the three advance color‐difference formulae, CMC, CIE94, and CIEDE2000, together with the basic CIELAB equation. In their original forms or with optimized KL values, the CIEDE2000 outperformed others, followed by CMC, and with the CIELAB and CIE94 the poorest for predicting the combined dataset of all color centers in the present study. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 198–208, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20106  相似文献   

17.
A synthesis of the author's recent work on color‐order systems and color‐difference evaluation is provided in context of current knowledge and practices. The development of a colorimetric model is demonstrated using Munsell “Celtic crosses” as a model of perceptual space. Issues surrounding color‐matching functions, unique hues, the Helmholtz–Kohlrausch effect, and lightness and chroma crispening are addressed, as is the difficulty of reconciling a difference‐based hue, chroma, lightness model with an Euclidean model. A new lightness scale and treatment of lightness crispening is proposed. The results indicate that, despite problems, relatively simple modified opponent‐color models provide good accuracy in predicting color‐order system and supra‐threshold small color‐difference data. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 209–222, 2001  相似文献   

18.
This article describes the development of new models for predicting four colour appearance attributes: saturation, vividness, blackness, and whiteness. The new models were developed on the basis of experimental data accumulated in the authors' previous study, in which the four colour appearance attributes were scaled by 64 Korean and 68 British observers using the categorical judgment method. Two types of models were developed: the ellipsoid‐based and the hue‐based. For the former, the perceived saturation, vividness, blackness, and whiteness were modeled in the form of colour‐difference formulae between the test colour and a reference colour. For the latter, blackness, whiteness, and chromaticness scales were modeled by estimating hue‐dependent lightness and chroma values for the “full colour” in the framework of Adams' equation. The new models were tested using NCS data and were found to outperform some of the existing colour appearance models.  相似文献   

19.
A new set of quantitative models of colour emotion and colour harmony were developed in this study using psychophysical data collected from 12 regions in the world, including Argentina, China, France, Germany, Hungary, Iran, Japan, Spain, Sweden, Taiwan, Thailand, and the UK. These data have previously been published in journals or conferences (for details see Tables 1 and 2 ). For colour emotion, three new models were derived, showing satisfactory predictive performance in terms of an average correlation coefficient of 0.78 for “warm/cool”, 0.80 for “heavy/light” and 0.81 for “active/passive”. The new colour harmony model also had satisfactory predictive performance, with an average correlation coefficient of 0.72. Principal component analysis shows that the common colour harmony principles, including hue similarity, chroma similarity, lightness difference and high lightness principles, were partly agreed by observers of the same region. The findings suggest that it is feasible to develop universal models of colour emotion and colour harmony, and that the former was found to be relatively more culture‐independent than the latter.  相似文献   

20.
In this study three colour preference models for single colours were developed. The first model was developed on the basis of the colour emotions, clean–dirty, tense–relaxed, and heavy–light. In this model colour preference was found affected most by the emotional feeling “clean.” The second model was developed on the basis of the three colour‐emotion factors identified in Part I, colour activity, colour weight, and colour heat. By combining this model with the colour‐science‐based formulae of these three factors, which have been developed in Part I, one can predict colour preference of a test colour from its colour‐appearance attributes. The third colour preference model was directly developed from colour‐appearance attributes. In this model colour preference is determined by the colour difference between a test colour and the reference colour (L*, a*, b*) = (50, ?8, 30). The above approaches to modeling single‐colour preference were also adopted in modeling colour preference for colour combinations. The results show that it was difficult to predict colour‐combination preference by colour emotions only. This study also clarifies the relationship between colour preference and colour harmony. The results show that although colour preference is strongly correlated with colour harmony, there are still colours of which the two scales disagree with each other. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 381–389, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20047  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号