首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of acid addition in synergizing radiation induced grafting of sodium styrene sulfonate (SSS) onto electron beam‐irradiated poly(vinylidene fluoride) (PVDF) films as a single‐step route for preparation of proton exchange membranes containing sulfonic acid groups was systematically investigated. The grafting reaction, known for its poor kinetics, was studied using SSS diluted in various solvents and solvent/acid solutions of different concentrations and volumes. The addition of acid solution was found to marvelously synergize the grafting reaction from very low values (e.g., 0.5%) to achieve high degrees (e.g., 65%) of grafting and such synergetic effect depends on the type, concentration and volume of the added acid. The degree of grafting was also found to be function of the monomer concentration and the irradiation dose at constant acid concentration and volume. The obtained membranes were investigated with Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), and X‐ray diffractometry (XRD). The results of present study reveal that grafting of SSS to levels suitable for fuel cell application onto PVDF film is only possible by adding aqueous acids solution. Moreover, the addition of acid makes this shorter single‐step method more economical route for preparation of proton exchange membranes for fuel cells. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Direct radiation-induced grafting of acrylonitrile (AN) onto both isotactic polypropylene (IPP) and (tetrafluoroethylene–ethylene) copolymer (ET) films has been studied. The effect of grafting conditions such as inhibitor and monomer concentrations and irradiation dose on the grafting yield was investigated. Homopolymerization of acrylonitrile was reduced to a minimum using ferric chloride (FeCl3), and the suitable optimum concentration of the inhibitor was found to be 0.1 wt%. The higher the monomer concentration, the higher the degree of grafting obtained. It was observed that the degree of grafting onto IPP was higher than onto ET, at given grafting conditions. The effect of aging on IPP was also examined. IR spectroscopy showed that IPP was susceptible to photooxidation by aging. The swelling behaviour and electrical conductivity of the graft and hydrolysed graft films were investigated. The electrical conductivity was improved by hydrolysis of polyacrylonitrile in the graft chains.  相似文献   

3.
The graft copolymerization of methyl‐methacrylate onto viscose fibers was studied under photoactive conditions with visible light using Ce4+/Ti3+ combination as redox initiator in a limited aqueous medium. Polymerization conducted in the presence of light at 30 ± 1°C produced significant grafting, compared with that conducted in the dark under the same conditions. The % grafting, % total conversion, and % grafting efficiency were studied by varying time, monomer concentration, initiator concentration, and pH of the medium. The mechanism of polymerization and graft copolymer formation have been discussed. Characterization of the grafted fibers was done by Fourier transform infrared spectroscopy and scanning electron microscopy. The effect of % grafting on thermal properties was studied by thermogravimetric analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 135–140, 1999  相似文献   

4.
Endowing conventional hydrophobic poly(vinylidene fluoride) (PVDF) films with hydrophilic properties was conducted using electron beam irradiation. Grafting of acrylic acid (AA) in/onto pre-irradiated PVDF films was investigated. Reaction parameters, monomer concentration and inhibitor concentration were examined. Radiation grafted films (PVDF-g-PAA) were synthesized with various grafting yields ranging from 12 to 130 wt % in presence of Mohr's salt (25 wt %). Below 80 wt % of monomer concentration, the degree of swelling was found to increase with the grafting yield. The PAA was arranged randomly in all PVDF matrix (grafting through). Above 80 wt % of monomer concentration, the PAA was grafted only onto the surface of PVDF films leading to a highly dense layer of PAA. Grafting through or surface grafting processes were achieved by varying the water fraction in the initial monomer solution. Water molecule acts not only as a carrier for the monomer but also as a plasticizer expanding the film in the three dimensions. Evidences of grafting through and surface grafting were produced using FTIR in ATR mode, SEM coupled to X-ray detection and XPS. An accurate quantification of AA units was possible up to the micromole via a Cu2+–EDTA complex analyzed by UV–vis spectroscopy.  相似文献   

5.
Proton‐exchange membranes containing poly(styrene sulfonic acid) grafts hosted in poly(vinylidene fluoride) (PVDF) films were prepared using two radiation‐induced grafting methods: a single‐step grafting method (SSGM) involving grafting of sodium styrene sulfonate onto electron beam (EB)‐irradiated PVDF films and a conventional two‐step grafting method (CTSGM) in which styrene monomer is grafted onto EB‐irradiated PVDF films and subsequently sulfonated. Differential scanning calorimetry, universal mechanical testing and scanning transmission electron microscopy were used to evaluate the thermal, mechanical and structural changes developed in the membranes during the preparation procedures. Physicochemical properties such as water uptake, hydration number and ionic conductivity were studied as functions of ion‐exchange capacity and the results obtained were correlated with the structural changes accompanying each preparation method. Membranes obtained using the SSGM were found to have superior properties compared to their counterparts prepared using the CTSGM suggesting the former method is more effective than the latter for imparting desired functionality and stability properties to the membranes. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
Two-hydroxyethyl methacrylate was grafted onto cotton cellulose using photoinitiation technique in the presence of the photoinitiator benzoin ethyl ether. Various parameters of the graft-copolymerization reaction, namely time, temperature, initiator, and monomer concentrations, were optimized using the grafting bath containing 10% methanol/acetone to dissolve the photoinitiator. The cotton sample, preswollen in sodium hydroxide, was subjected to grafting under optimized conditions. The preswollen samples showed higher graft add-on values at the equivalent monomer concentration. The moisture regain initially decreased at lower graft add-on levels and increased marginally with higher graft add-on. This behavior of the grafted substrate with respect to moisture regain has been explained.  相似文献   

7.
Graft copolymerization of acrylic acid (AAc) onto polystyrene (PS) by the solid phase graft copolymerization technique was studied. Benzoyl peroxide (BPO) was used as the free radical initiator. Acrylic acid was introduced into the reactor as an aqueous solution. Optimum reaction conditions to obtain maximum grafting were evaluated. The variables studied were temperature, initiator concentration, monomer concentration, acrylic acid-to-water ratio, and reaction time. The graft copolymer was characterized by infrared (IR) spectroscopy, and the graft level was quantified by the IR absorbance ratio technique and titration. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1001–1007, 1998  相似文献   

8.
Hydrophilic carboxyl containing fluoropolymers was obtained by radiation grafting of acrylic acid onto tetrafluoroethylene—ethylene copolymers with different compositions. By using simultaneous (60Co) and preirradiation (electron beam) techniques, the effect of the grafting conditions (monomer concentration, dose rate, dose, film thickness, etc.) on the degree of grafting was studied. A considerable effect of the polymer compositions, especially the C? F bonds content, and the batch irradiation on the degree of grafting was found. It was observed by scanning electron microscopy that the grafting took place mainly on the polymeric film surface and developed inward with increasing diffusion of the acrylic acid through the grafted layers. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The effect of reaction conditions on the grafting parameters during the grafting of acrylamide (ACM) onto guar gum (GOH) by using a Cu+2–mandelic acid (MA) redox couple was studied. On increasing the Cu+2 ion concentration (0.5 × 10−2 to 1.0 × 10−2 mol dm−3), an increase in total conversion of monomer, grafting ratio, efficiency, and add on was observed. Grafting ratios increased with an increase in concentration of mandelic acid and reaches its maximum value at 0.8 × 10−2 mol dm−3. It was observed that grafting onto guar gum takes place efficiently when monomer and hydrogen ion concentrations are 20.0 × 10−2 and 2.2 × 10−2 mol dm−3, respectively. Optimum temperature and time for obtaining a maximum grafting ratio and efficiency was found to be 35 ± 0.2°C and 2 h, respectively. The plausible mechanism of grafting was suggested. The graft copolymer was characterized by infrared spectroscopy and thermogravimetric analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 739–745, 1999  相似文献   

10.
The graft copolymerization of methyl methacrylate onto silk fibers initiated by a hydrogen peroxide–thiourea redox system was investigated under various conditions. The effects of monomer, initiator, temperature, acidity of the medium, and solvent on the rate of grafting were studied. The graft yield increases with the increase of monomer and initiator concentration. The graft yield also increases with the increase of acid concentration upto 22.50 × 10?2M and thereafter it decreases. The effect of some inorganic salts on the rate of grafting has also been investigated, and a suitable mechanism has been suggested.  相似文献   

11.
Photografting reaction onto styrene–butadiene rubber (SBR) as a function of monomer concentration, grafting method, irradiation time, and the carbon black content has been studied using ultraviolet (UV). Glycidyl methacrylate and benzophenone are used as monomer and initiator, respectively. The occurrence of graft reaction onto SBR surface is identified by infrared attenuated total reflection (IR-ATR) analysis. The degree of monomer graft increases with monomer concentration and tends to level off at high monomer concentration (>8.3M/L). Graft ratio also increases with UV irradiation time. Carbon black content is found as one of important factors that determine the monomer graft efficiency. The amount of monomer graft onto SBR decreases with increasing carbon black content and it is attributed to the reduction of irradiation absorbance due to the presence of carbon black. The occurrence of reaction between glycidyl methacrylate grafted SBR and nylon-6 via melt phase reaction is also identified using IR-ATR analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1733–1739, 1999  相似文献   

12.
杨连利  刘勇 《化工中间体》2008,(1):12-14,17
以过硫酸钾为引发剂,在氮气保护下,研究了黄原胶(XG)与丙烯酸(AA)的接枝共聚反应。考察了单体浓度、引发剂浓度、反应温度和反应时间等因素对接枝率及接枝效率的影响,探讨了过硫酸钾引发黄原胶接枝丙烯酸共聚反应的基本规律。采用红外光谱(FT—IR)对接枝共聚物的结构进行研究,并初步探讨了接枝机理。  相似文献   

13.
Gamma radiation‐induced graft copolymerization of styrene onto poly(ethylene terephthalate) (PET) films was studied using simultaneous irradiation technique. The effects of grafting conditions on the degree of grafting were investigated. The grafting conditions include monomer concentration, irradiation dose, dose rate, and the type of solvent. Moreover, the effect of the addition of crosslinking agents [i.e., divinylbenzene (DVB) and triallyl cyanurate (TAC)] having various concentrations were also investigated. The degree of grafting was found to be greatly dependent on the grafting conditions. Of the three diluents employed, methylene chloride was found to drastically enhance the degree of grafting. The order of dependence of the initial rate of grafting on the monomer concentration was found to be 2.2. The grafted PET films were identified by FTIR spectroscopy and characterized by X‐ray diffraction (XRD). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1003–1012, 2000  相似文献   

14.
The graft copolymerization of methyl methacrylate onto wool initiated by thallium (III) perchloric was investigated in aqueous perchloric acid medium. The rate of grafting was evaluated varying the concentrations of the monomer, initiator, acid, and temperature. The rate of grafting was found to increase with the increase of the monomer and the initiator concentration. The graft yield was found to decrease upon increasing the acid concentration. Increase of temperature was accompanied with the increase of the graft yield. From the Arrhenius plot the overall activation energy was calculated to be 4.7 kcal/mol. The effect of inhibitors, various solvents, cationic and anionic surfactants, and different inorganic salts on the graft yield was studied. The grafting was considerably influenced by chemical modification of wool prior to grafting. A suitable kinetic scheme has been proposed, and a rate equation has been derived.  相似文献   

15.
Graft copolymerization of acrylamide (AM) onto silk fibers, using Mn(III)–sulphate as initiator, has been investigated, in aqueous sulphuric acid in the temperature range of 30–55°C. Grafting reaction has been studied by varying the concentration of monomer, Mn(III), sulphuric acid, temperature, and also with the modified silk. The graft yield increases significantly with increase of monomer concentrations to the extent of 0.85M, after which the rate falls. With increase in Mn(III) concentration and H+ ion concentration the graft yield increases, but after an optimum concentration a depression in the graft yield is noticed. The rate of the reaction is temperature-dependent; with increase of temperature the graft-on increases. Among the solvent composition studied a solvent/water mixture containing 10% of the solvent seems to constitute the most favorable medium for grafting, and a further increase of solvent composition decreases the graft yield. The effect of various additives such as transition metal salts, aromatic and heterocyclic amines on grafting reaction has been studied. A suitable mechanism for grafting has been proposed. Finally physical characterization such as thermal analysis (TGA) of the grafted samples has been carried out in order to ensure grafting and to study the change in the properties of the fibers.  相似文献   

16.
Graft copolymerization of methyl methacrylate onto poly(ethylene terephthalate) fibers was investigated in aqueous perchloric acid medium using thallium(III) ions as initiator. The rate of grafting was evaluated varying the concentrations of monomer, initiator, and acid and the temperature. The rate of grafting was found to increase with increase in monomer and initiator concentrations. The graft yield was found to increase with increase in the acid concentration up to 0.49 mL?1, and beyond this concentration it was found to decrease. Increase in temperature resulted in increase in graft yield. From the Arrhenius plot the overall activation energy was found to be 3.76 kcal/mol. The effect of additives such as swelling agents, inorganic salts, different solvents, and inhibitors on graft yield was studied. A suitable kinetic scheme is proposed and a rate equation derived.  相似文献   

17.
玉米淀粉接枝丙烯酸共聚反应研究   总被引:4,自引:0,他引:4  
对于过硫酸铵-亚硫酸氢钠组成的氧化还原引发体系下的淀粉-丙烯酸接枝共聚反应。本课题较系统地研究了引发剂浓度、单体浓度、单体中和度、反应温度和反应时间等因素对该接枝共聚反应的影响,通过物料的二次加入有效地提高了该反应的接枝效果,并对该接枝共聚物进行了红外测试表征。  相似文献   

18.
多孔膜基材对等离子体接枝膜微观结构的影响   总被引:1,自引:0,他引:1  
采用等离子体诱导接枝聚合法,在有机聚偏氟乙烯(PVDF)膜、尼龙(N6)膜和无机多孔阳极氧化铝(PAA)膜上接枝甲基丙烯酸(MAA),系统地研究了多孔膜基材及接枝工艺条件对接枝开关膜微观结构的影响。结果发现,对于PVDF基材膜,单体溶液脱气次数越多接枝率越大。对于不同类别的多孔膜基材,采用相同工艺条件接枝时,N6膜的接枝率高于PVDF膜,PAA膜接枝率最低。在接枝率相近的时候,接枝层在PVDF膜整个断面孔内和表面均存在,而N6膜则主要集中在表层。在PAA膜上接枝时发现,等离子体照射功率的强弱对基材膜的影响很大,当功率超过50W时,PAA膜表层就会被刻蚀而导致膜的质量减轻。  相似文献   

19.
姚杰  丛昊  李丹  孙浩  刘冰  刘帅 《水处理技术》2020,46(4):31-34
为提高支撑液膜萃取体系的稳定性,以苯乙烯为接枝单体、二苯甲酮(BP)为光引发剂,通过紫外接枝的方法对支撑体聚偏氟乙烯(PVDF)膜进行疏水改性,研究了制备改性膜的优化实验条件,对改性前后的PVDF膜的官能团、微观形貌和接触角进行了表征,并考察了原膜与改性膜构建的支撑液膜萃取体系处理含酚废水的能力。结果表明,制备改性膜的优化条件为:紫外光照时间15 min,反应温度30℃,接枝单体苯乙烯的质量分数4%,引发剂BP浓度0.3 mol/L。改性后的PVDF膜的接触角提高了76%,疏水性能显著提高。连续运行5次后,处理含酚废水改性膜除酚率比改性前提高了47%,体系运行更稳定。  相似文献   

20.
Thiol starches of degree of substitution (D.S.) 0.005–0.162 were prepared by displacing starch tosyloxy groups with xanthate and treating the resulting xanthate esters with either sodium hydroxide or sodium borohydride. Acrylonitrile, styrene, acrylamide, acrylic acid, and dimethylaminoethyl methacrylate were grafted onto the thiol starches with hydrogen peroxide as initiator. The peroxide caused both grafting of monomer and coupling of thiol groups to disulfide. Treating graft copolymers with sodium borohydride regenerated thiol groups from disulfide groups so that the grafting sequence could be repeated. By regenerating the thiol groups and repeating the grafting steps, high add-on and high-frequency starch graft copolymers were prepared. During four grafting sequences, acrylonitrile reacted with D.S. 0.162 thiol starch to give graft copolymers that contained increasing amounts of polyacrylonitrile (46.0–66.5%). Grafting frequency increased from 183 to 71 anhydroglucose units (AGU)/graft, while molecular weights of the grafted chains ranged between 20,000 and 25,200. The final product was hydrolyzed with potassium hydroxide solution to a copolymer, which absorbed up to 400 ml water per gram. Styrene was grafted onto thiol starch to give products containing 34.4–69.5% polystyrene with 986–3520 AGU/graft and having molecular weights of grafted chains between 276,000 and 364,000. Graft copolymers containing 48.9% polyacrylamide, 21.2% poly(acrylic acid), and 77.7% poly(2-methacryloyloxyethyldimethylammonium acetate) were obtained under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号