首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

2.
We carried out the free‐radical copolymerization of N‐phenylmaleimide with acrylic acid and acrylamide with an equimolar feed monomer ratio. We carried out the synthesis of the copolymers in dioxane at 70°C with benzoyl peroxide as the initiator and a total monomer concentration of 2.5M. The copolymer compositions were obtained by elemental analysis and 1H‐NMR spectroscopy. The hydrophilic polymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymers were performed. Hydrophilic poly(N‐phenylmaleimide‐co‐acrylic acid) and poly(N‐phenylmaleimide‐co‐acrylamide) were used for the separation of a series of metal ions in the aqueous phase with the liquid‐phase polymer‐based retention method in the heterogeneous phase. The method is based on the retention of inorganic ions by the polymer in conjunction with membrane filtration and subsequent separation of low‐molecular‐mass species from the formed polymer/metal‐ion complex. The polymer could bind several metal ions, such as Cr(III), Co (II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) inorganic ions, in aqueous solution at pH values of 3, 5, and 7. The interaction of the inorganic ions with the hydrophilic polymer was determined as a function of pH and a filtration factor. Hydrophilic polymeric reagents with strong metal‐complexing properties were synthesized and used to separate those complexed from noncomplexed ions in the heterogeneous phase. The polymers exhibited a high retention capability at pH values of 5 and 7. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
Alkylation of N‐vinylpyrrolidone using lithium diisopropylamide and bis(2‐bromoethyl) ether was carried out to obtain 3‐(2‐(2‐bromoethoxy)ethyl)‐1‐vinyl‐2‐pyrrolidone ( 2 ). The derivative 2 represents a versatile starting molecule for further modification via nucleophilic displacement yielding, for example, the bicyclic 2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one ( 4 ) or the ammonium salt 3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone ( 10 ). Via free radical polymerization of 4 and 10 , the corresponding homopolymers were obtained. Copolymerization of 4 and 10 with N,N′‐diethylacrylamide yielded water‐soluble materials. The thermosensitive solubility of copolymers poly[(2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one)‐co‐(N,N′‐diethylacrylamide)] and poly[(3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone)‐co‐(N‐vinylpyrrolidone)] in water was investigated. © 2015 Society of Chemical Industry  相似文献   

4.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

5.
In the current study, poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium), poly(VP‐co‐AMPS), was prepared and used for the removal of Cu2+, Cd2+, and Ni2+ ions via a polymer‐enhanced ultrafiltration (PEUF) technique. The copolymer was synthesized by radical polymerization in an aqueous medium with a comonomer feed composition of 50:50 mol %. The molecular structure of the copolymer was elucidated by ATR‐FTIR and 1H NMR spectroscopy, and the average molecular weight was obtained by GPC. The copolymer composition was determined to be 0.42 for VP and 0.58 for AMPS by 1H NMR spectroscopy. The copolymer and homopolymers exhibited different retention properties for the metal ions. PAMPS exhibited a high retention capacity for all of the metal ions at both pH values studied. PVP exhibited selectivity for nickel ions. Poly(VP‐co‐AMPS) exhibited a lower retention capacity compared to PAMPS. However, for poly(VP‐co‐AMPS), selectivity for nickel ions was observed, and the retention of copper and cadmium ions increased compared to PVP. The homopolymer mixture containing PAMPS and PVP was inefficient for the retention of the studied metal ions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41272.  相似文献   

6.
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

7.
The water‐insoluble resin poly(2‐acrylamido‐2‐methyl‐1‐propanosulfonic acid‐co‐4‐vinyl pyridine), through a radical polymerization solution, was synthesized with ammonium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinking reagent. The metal‐ion‐retention properties were studied by batch and column equilibrium procedures for the following metal ions: Hg(II), Cu(II), Cd(II), Zn(II), Pb(II), and Cr(III). These properties were investigated under competitive and noncompetitive conditions. The effects of the pH, maximum retention capacity, and regeneration capacity were studied. The resin showed a high retention ability for Hg(II) ions at pH 2.0. The retention of Hg(II) ions from a mixture of ions was greater than 90%. The resin showed a high selectivity for Hg(II) with respect to other metal ions. The Hg(II)‐loaded resin was able to be recovered with 4M HClO4. The retention capacity was kept after four cycles of adsorption and desorption. The retention properties for Hg(II) were very similar with the batch and column methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3556–3562, 2003  相似文献   

8.
Poly(N‐vinyl‐2‐pyrrolidone) and poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) hydrogels were prepared by gamma irradiation for the removal of heavy metal ions (i.e., lead, copper, zinc, and cadmium) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L) and at different pH values (1–13). The observed affinity order in adsorption of these metal ions on the hydrogels was Zn(II) > Pb(II) > Cu(II) > Cd(II) under competitive conditions. The optimal pH range for the heavy metal ions was from 7 to 9. The adsorption of the heavy metal ions decreased with increasing temperature in both water and synthetic seawater conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2013–2018, 2003  相似文献   

9.
The crosslinked poly[N‐(3‐dimethylamino)propylmethacrylamide] [P(NDAPA)] and poly[N‐(3‐dimethylamino)propylmethacrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] were synthesized by radical polymerization. The resins were completely insoluble in water. The metal‐ion‐uptake properties were studied by a batch equilibrium procedure for the following metal ions: silver(I), copper(II), cadmium(II), zinc(II), lead(II), mercury(II), chromium(III), and aluminum(III). The P(NDAPA‐co‐AA) resin showed a lower metal‐ion affinity than P(NDAPA), except for Hg(II), which was retained at 71% at pH 2. At pH 5, the resin showed a higher affinity for Pb(II) (80%) and Cu(II) (60%), but its affinity was very low for Zn(II) and Cr(III). The polymer ligand–metal‐ion equilibrium was achieved during the first 20 min. By changing the pH, we found it possible to remove between 60 and 70% of Cd(II) and Zn(II) ions with (1M, 4M) HClO4 and (1M, 4M) HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5232–5239, 2006  相似文献   

10.
Ultrafine well‐dispersed Fe3O4 magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The synthesis of Fe3O4/poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS), Fe3O4/poly (acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AM‐co‐AMPS) and Fe3O4/poly (acrylic acid‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AA‐co‐AMPS) ‐core/shell nanogels are reported. The nanogels were prepared via crosslinking copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid, acrylamide and acrylic acid monomers in the presence of Fe3O4 nanoparticles, N,N′‐methylenebisacrylamide (MBA) as a crosslinker, N,N,N′,N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H‐NMR spectra indicated that the compositions of the prepared nanogels are consistent with the designed structure. X‐ray powder diffraction (XRD) and transmission electron microscope (TEM) measurements were used to determine the size of both magnetite and stabilized polymer coated magnetite nanoparticles. The data showed that the mean particle size of synthesized magnetite (Fe3O4) nanoparticles was about 10 nm. The diameter of the stabilized polymer coated Fe3O4 nanogels ranged from 50 to 250 nm based on polymer type. TEM micrographs proved that nanogels possess the spherical morphology before and after swelling. These nanogels exhibited pH‐induced phase transition due to protonation of AMPS copolymer chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
In order to obtain modified polymeric electrodes, polymers were synthesized that are insoluble in water but soluble in common organic solvents and contain different functional groups that are able to coordinate metal ions from low concentrations. Poly(acrylic acid‐co‐styrene), poly(acrylamide‐co‐4‐vinyl pyridine), and poly(styrene‐co‐4‐vinyl pyridine) were synthesized by radical polymerization. The copolymers were characterized by FTIR, 1H‐NMR, 13C‐NMR, scanning electron microscopy, and thermal analysis. The molecular weight and molecular weight distribution were determined by size exclusion chromatography. These complexing polymers were used in the preparation by spin coating of complexing chemically modified electrodes. The polymer film modified electrodes were then tested for the detection of metal ions using the chemical preconcentration and anodic stripping technique. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1192–1197, 2005  相似文献   

12.
A series of poly(acrylamide‐co‐4‐vinylpyridine) hydrogels having varied acrylamide/4‐vinylpyridine content and different crosslink ratios of N,N′‐methylene‐bisacrylamide was prepared by using solution polymerization. The prepared hydrogel polymers were characterized by their elemental analysis, infrared spectroscopy, and equilibrium water content. The polymers were investigated toward metal ion uptake of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymers were more sensitive to Cu(II) and Ni(II) and the order of metal ion binding was Ni(II), Cu(II) > Zn(II) > Co(II) > Mn(II). Metal ion uptake by the polymers was reduced as the pH of the medium decreased. Recycling of the resins resulted in high recovery of the metal ions from their aqueous solutions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2522–2526, 2003  相似文献   

13.
The crosslinked resins poly(acrylic acid) (PAA) and poly[N‐3‐(dimethylamino)propyl acrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] are obtained by radical polymerization and characterized by FTIR spectroscopy. PAA at basic pH exists basically as an acrylate anion that may contain end carboxylate groups or form bridges acting as mono‐ or bidentate ligands. P(NDAPA‐co‐AA) presents three potential ligand groups in its structure: carboxylic acid, amide, and amine. The trace metal ion retention properties of these two resins is compared by using the batch equilibrium procedure. The metal ions are contained in saline aqueous solutions and are found in natural seawater. The retention of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions is studied under competitive and noncompetitive conditions. The effects on the pH, contact time, amount of adsorbent, temperature, and salinity are investigated. The PAA resin presents a high affinity (>80%) for Cu(II) and Cd(II) ions. The P(NDAPA‐co‐AA) resin shows a high affinity for Pb(II) and Cd(II) ions. With 4M HNO3 it is possible to completely recover the PAA resin charged with Cu(II) ions and the P(NDAPA‐co‐AA) resin charged with Pb(II) ions. The two resins show a high affinity for Cd(II) ions from the seawater containing Cu(II) and Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1385–1394, 2005  相似文献   

14.
The synthesis of poly (N,N′-dimethylacrylamide-co-acrylic acd) under different feed molar ratios was carried out by radical polymerization. Both homopolymers were also synthesized to compare the metal ion binding abilities. All polymers were water-soluble and were characterized by FTIR, 1H-NMR, 13C-NMR, and TGA. The metal complexing properties for the metals Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Hg(II), Cr(III), and Fe(III) in the aqueous phase were investigated using the liquid-phase polymer-based retention (LPR) method. The metal ion interactions with the hydrophilic polymer were determined as a function of pH and the filtration factor. According to the interaction pattern obtained, the metal ions form the most stable complexes with the copolymer poly(N,N′-dimethylacrylamide-co-acrylic acid) within the pH range 5–7. Hg(II) was not retained at all the pH ranges investigated. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 93–100, 1998  相似文献   

15.
A copolymer, poly(L ‐lactide)‐g‐poly(N‐vinyl pyrrolidone) (PLLA‐g‐PVP) was prepared with poly(L ‐lactide) (PLLA) and N‐vinyl pyrrolidone in the presence of methanol as a solvent by γ‐ray irradiation. The structure of PLLA‐g‐PVP was characterized by 1H‐NMR and Fourier transform infrared spectroscopy. The PLLA‐g‐PVP graft ratio calculated by the percentage increase in weight increased with the increase of absorbed dose, and the percentage crystallinity of PLLA‐g‐PVP decreased with increasing graft ratio. The introduction of the poly(N‐vinyl pyrrolidone) chain into PLLA resulted in a decrease in the contact angle of PLLA‐g‐PVP with increasing graft ratio. In vitro degradation testing showed that PLLA‐g‐PVP had a higher degradation rate both in the weight‐loss test and molecular weight measurement because of a lower crystalline percentage and higher hydrophilicity compared to PLLA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A polyvinyl pyrrolidone terpolymer system is described that can be chemically cross‐linked at moderate, 70–100°C, temperatures. The system has significant potential for development of durable long‐lasting pyrrolidone coatings in a wide range of applications, particularly in water filtration membrane construction where leaching is an unresolved, serious problem. The synthesis of the terpolymer, poly(N‐vinyl‐2‐pyrrolidone‐co‐vinyl acetate‐co‐glycidyl methacrylate), by free radical polymerization is described. The reactive features of this terpolymer are presented in the context of acidic anhydride curing. In a polar aprotic solvent, the terpolymer is reacted with poly(methyl vinyl ether‐co‐maleic acid) and cured thermally. Key aspects of the terpolymer synthesis and the acid anhydride cross‐linking reaction using DSC, rheology, FTIR, and a small molecule model system to study the cross‐linking chemistry are presented. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Cellulose‐graft‐polyacrylamide and cellulose‐graft‐poly(N,N‐dimethylacrylamide) copolymers were prepared by single‐electron‐transfer living radical polymerization (SET‐LRP) in homogeneous medium. Cellulose macroinitiators for SET‐LRP, with different numbers of initiating sites along the cellulose backbone, were successfully synthesized by direct acylation of cellulose with 2‐bromoisobutyryl bromide in LiCl/dimethylacetamide. Dynamic light scattering revealed that cellulose macroinitiator molecules in dimethylsulfoxide (DMSO) exist primarily as individual chains with a certain amount of intermolecular aggregates. SET‐LRP of acrylamide and N,N‐dimethylacrylamide with the cellulose macroinitiators was carried out in DMSO solution. Formation of cellulose‐graft‐copolymers was confirmed using attenuated total reflectance Fourier transform infrared, 1H NMR and 13C NMR spectroscopy, and the products were water‐soluble. High content of poly(N,N‐dimethylacrylamide) in the copolymers enhanced the thermal stability relative to that of cellulose. Scanning electron microscopy studies of cellulose‐based particles formed from the copolymers using the aerosol flow reactor method revealed spherical nanoscale structures. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Photoresponsive polymer with azobenzene pendant group (PDMAA‐co‐PAPA) was synthesized by radical polymerization of N,N‐dimethylacrylamide (DMAA) and N‐4‐phenylazophenyl acrylamide (PAPA), and the characterization of the inclusion complexes of the PDMAA‐co‐PAPA with α‐cyclodextrin (α‐CD) were performed by FTIR, GPC, 1H NMR, 2D NOESY, and UV–vis spectroscopy. It was found that the solubility of PDMAA‐co‐PAPA and α‐CD inclusion complexes in aqueous solution showed tunable property, which could be triggered by alternating UV–vis light irradiation at a certain temperature due to the effect of molecular recognition of α‐CD with azobenzene moiety in the polymer. After UV irradiation, the lower critical solution temperature (LCST) of the polymer aqueous solution increased slightly without α‐CD while the LCST decreased sharply at presence of α‐CD. Furthermore, UV spectroscopy showed that the photoisomerization of the polymer solution went on rapidly and reversibly, and 2D NOESY data suggested that the inclusion complexation of α‐CD with trans azobenzene moiety and the decomplexation with cis azobenzene resulted in reversible solubility behavior when objected to UV and Vis light irradiation alternately. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

20.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号