首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to evaluate the effect of swirl direction and intensity of primary/secondary stream on pulverized coal gasification performance, a numerical study was conducted. Eulerian and Lagrangian approaches are used for the gas and solid phase, respectively. The computation code was formulated with PSI‐cell method, k? model for turbulence flow, Monte‐Carlo method for radiative heat transfer, and eddy dissipation model for gas‐phase reaction rate. A one‐step two‐reaction model is employed for the devolatilization of Kideco coal. Flow and reactor performance are varied by primary/secondary swirl intensity and direction. For weak primary swirl, the WSF region is minimized at the secondary vane angle beginning generation of internal recirculation zone and having peak coal burnout. The flame stability is improved at counterswirl rather than coswirl due to its intense shear. Meanwhile, for strong primary swirl, flow distribution and coal burnout are the reverse trend with those of weak swirl and the flame stability is somewhat enhanced at coswirl rather than counterswirl. To improve coal burnout and flame stability, it is confirmed that the swirl condition be proposed for moving the flame front position toward upstream. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of hydrogen addition in methane–air premixed flames has been examined from a swirl-stabilized combustor under unconfined flame conditions. Different swirlers have been examined to investigate the effect of swirl intensity on enriching methane–air flame with hydrogen in a laboratory-scale premixed combustor operated at 5.81 kW. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced into the burner having swirlers of different swirl vane angles that provided different swirl strengths. The combustion characteristics of hydrogen-enriched methane–air flames at fixed thermal load but different swirl strengths were examined using particle image velocimetry (PIV), OH chemiluminescence, gas analyzers, and micro-thermocouple diagnostics to provide information on flow field, combustion generated OH radical and gas species concentration, and temperature distribution, respectively. The results show that higher combustibility of hydrogen assists to promote faster chemical reaction, raises temperature in the reaction zone and reduces the recirculation flow in the reaction zone. The upstream of flame region is more dependent on the swirl strength than the effect of hydrogen addition to methane fuel. At lower swirl strength condition the NO concentration in the reaction zone reduces with increase in hydrogen content in the fuel mixture. Higher combustibility of hydrogen accelerates the flow to reduce the residence time of hot product gases in the high temperature reaction zone. At higher swirl strength the NO concentration increases with increase in hydrogen content in the fuel mixture. The effect of dynamic expansion of the gases with hydrogen addition appears to be more dominant to reduce the recirculation of relatively cooler gases into the reaction zone. NO concentration also increases with decrease in the swirl strength.  相似文献   

3.
Low NOx burner and air staged combustion are widely applied to control NOx emission in coal-fired power plants. The gas-solid two-phase flow, pulverized coal combustion and NOx emission characteristics of a single low NOx swirl burner in an existing coal-fired boiler was numerically simulated to analyze the mechanisms of flame stability and in-flame NOx reduction. And the detailed NOx formation and reduction model under fuel rich conditions was employed to optimize NOx emissions for the low NOx burner with air staged combustion of different burner stoichiometric ratios. The results show that the specially-designed swirl burner structures including the pulverized coal concentrator, flame stabilizing ring and baffle plate create an ignition region of high gas temperature, proper oxygen concentration and high pulverized coal concentration near the annular recirculation zone at the burner outlet for flame stability. At the same time, the annular recirculation zone is generated between the primary and secondary air jets to promote the rapid ignition and combustion of pulverized coal particles to consume oxygen, and then a reducing region is formed as fuel-rich environment to contribute to in-flame NOX reduction. Moreover, the NOx concentration at the outlet of the combustion chamber is greatly reduced when the deep air staged combustion with the burner stoichiometric ratio of 0.75 is adopted, and the CO concentration at the outlet of the combustion chamber can be maintained simultaneously at a low level through the over-fired air injection of high velocity to enhance the mixing of the fresh air with the flue gas, which can provide the optimal solution for lower NOx emission in the existing coal-fired boilers.  相似文献   

4.
In order to analyse the sensitivity on pulverized coal flames of variables such as initial turbulent intensity, steam addition, primary/secondary momentum ratio, and radiation heat transfer, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas Lagrangian approach is used for the solid phase. Turbulence is modeled using the standard kϵ model. The turbulent combustion model incorporates the eddy dissipation model. The radiation heat transfer is solved using a Monte‐Carlo method. One‐step two‐reaction model is employed for the devolatilization of a Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity is an important factor to predict the accurate flame front position. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not affect the reactor performance such as coal burnout, residence time and flame front position. The primary/secondary momentum ratio only affects the position of flame front, but the coal burnout is slightly influenced. It is confirmed that the momentum ratio is a variable only associated with the flame stabilization. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly in reactor temperature and coal burnout. The increase of liftoff height and dropped gas temperature mean the harm of flame stabilization in the reactor, and so the gasification reaction may be deactivated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
本文阐述了径向浓淡旋流煤粉燃烧器的基本原理,通过在一台410t/h的锅炉上的冷态,热态实验,研究了直流二次风率对燃烧器空气动力特性的影响,得到了直流二次风率与射流的扩展角,中心回流区直径及长度,一,二次风混合的关系,以及对燃烧器高效,稳燃,低污染,防结渣及防高温腐蚀性能的影响。  相似文献   

6.
采用三维贴体坐标结构化网格,对复杂曲面形状的新型旋流燃烧器(花瓣燃烧器)进行了三维的流场数值实验.模拟了旋流的衰减过程,分析了花瓣燃烧器的流场特点;首次给出了旋流燃烧器回流区的立体形状图,直观地反映了回流区的特性;分析了普通旋流燃烧器和花瓣燃烧器的流场参数,并对掺混系数进行了对比;通过花瓣燃烧器流场特性的研究得出,花瓣燃烧器的回流区是由径向回流区和中心回流区融合构成,端部呈花瓣状,所形成的特殊流场能够使煤粉颗粒从燃烧器喷入炉内后,不是首先向外扩散,而是迅速地进入回流区,与高温烟气迅速混合,形成稳定热源,为煤粉着火燃烧提供了前提条件,具有良好的稳燃性能.  相似文献   

7.
The present work focuses on studying experimentally and numerically the oxy‐fuel combustion characteristics inside a porous plate reactor towards the application of oxy‐combustion carbon capture technology. Initially, non‐reactive flow experiments are performed to analyze the permeation rate of oxygen in order to obtain the desired stoichiometric ratios. A numerical model is developed for non‐reactive and reactive flow cases. The model is validated against the presently recorded experimental data for the non‐reacting flow cases, and it is validated against the available literature data for oxy‐fuel combustion for the reacting flow cases. A modified two‐step oxy‐combustion reaction kinetics model for methane is implemented in the present model. Simulations are performed over wide range of operating oxidizer ratios (O2/CO2 ratio), from OR = 0.2 to OR = 0.4, and over wide range of equivalence ratios, from φ = 0.7 to φ = 1.0. The flame length was decreased as a result of the increase of the oxidizer ratio. Effects of CO2 recirculation amount on the oxy‐combustion flame stability are examined. A reduction in combustion temperature and increase in flame fluctuations are encountered while increasing CO2 concentration inside the reactor. At high equivalence ratio, the combustion temperature and flame stability are improved. At low equivalence ratio, the flame length is increased, and the flame was moved towards the reactor center line. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Swirling flows have been commonly used for a number of years for the stabilization of high-intensity combustion processes. In general these swirling flows are poorly understood because of their compelexity. This paper describes the recent progress in understanding and using these swirling flows. The main effects of swirl are to improve flame stability as a result of the formation of toroidal recirculation zones and to reduce combustion lengths by producing high rates of entrainment of the ambient fluid and fast mixing, particularly near to the boundaries of recirculation zones. Two main types of swirl combustor can be identified as follows:The Swirl Burner. Here swirling flow exhausts into a furnace or cavity combustion occurs in and just outside the burner exit.The Cyclone Combustion Chamber. Here air is injected tangentially into a large, usually, cylindrical chamber and exhausts through a centrally located exit hole in one end. Combustion mostly occurs inside the cyclone chamber.Initially the isothermal performance of swirl combustors is considered, and it is demonstrated that, contrary to many previous assumptions, the flow is often not axisymmetric but three-dimensional time-dependent. Under most normal nonpremixed combustion conditions, the swirling flow returns to axisymmetry, although there is still a residual presence of the three-dimensionality, particularly on the boundary of the reverse flow zone. Swirl increases considerably the stability limits of most flames; in fact with certain swirl burners, the blow-off limits are virtually infinite. Cyclone combustion chambers have large internal reverse flow zones which provide very long residence times for the fuel/air mixture. They are typically used for the combustion of difficult materials such as poor quality coal or vegetable refuse. In contrast to the swirl burner which usually has one central toroidal, recirculation zone, the cyclone combustor often has up to three concentric toroidal recirculation zones. Sufficient information is also available to indicate that stratified or staged fuel or air entry may be used to minimize noise, hydrocarbon, and NOx emissions from swirl combustors.  相似文献   

9.
A numerical 2D model of a thermal recuperative incinerator (TRI) used to oxidise volatile organic compounds (VOCs) diluted in an air flow was developed to simulate the coupled equations for flow, heat transfer, mass transfer and progress of chemical reactions. The model was confronted with experimental values obtained on a highly instrumented half-industrial-scale pilot unit run under the same conditions. The model indicates that the flow inside the reactor is close to the ideal situation of a plug flow reactor. Nevertheless, a non-symmetric flow is retrieved despite the symmetrical arrangement of the combustion chamber. The model confirms that the most constraining phenomenon is the oxidation of CO. The formation of CO results of the combustion of the VOCs, and not from the combustion of the methane fed into the burner. The models demonstrated that the CO destruction reaction is controlled by the micro-mixing efficiency in a large part of the reactor, and not by the chemical kinetics of the reaction. This indicates the need for installing additional turbulence devices in order to enhance the turbulence level in a zone established from this modelling. The model establishes that thermal NO is formed in the flame zone of the burner, and is not due to VOC oxidation. These results together indicate that concentrating VOCs in an air flux prior to its treatment by a TRI will limit CO2 emissions and NO emissions together.  相似文献   

10.
To develop low-pollution burners, the effect of a coal concentrator on NO formation in swirling coal combustion is studied using both numerical simulation and experiments. The isothermal gas–particle two-phase velocities and particle concentration in a cold model of swirl burners with and without coal concentrators were measured using the phase Doppler particle anemometer (PDPA). A full two-fluid model of reacting gas–particle flows and coal combustion with an algebraic unified second-order moment (AUSM) turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion and NO formation with different coal concentrators. The results give the turbulent kinetic energy, particle concentration, temperature and NO concentration in cases of with and without coal concentrators. The predicted results for cold two-phase flows are in good agreement with the PDPA measurement results, showing that the coal concentrator increases the turbulence and particle concentration in the recirculation zone. The combustion modeling results indicate that although the coal concentrator increases the turbulence and combustion temperature, but still can remarkably reduce the NO formation due to creating high coal concentration in the recirculation zone.  相似文献   

11.
旋流煤粉多相流动与燃烧一维数学模型及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为了发展和有效地进行旋流煤粉多相流动与燃烧数值模拟,作者在多连续介质模型的框架中建立了综合考虑气-固两相旋流流动,燃烧与传热的旋流煤粉燃烧一维数学模型。应用这一模型对涡旋燃烧炉环形通道内煤粉燃烧和气体燃烧的数值计算表明,该模型可快速有效地用于模拟旋流煤粉多相流动与燃烧过程,给出炉内温度、速度与浓度分布以及燃烧效率等主要参数。  相似文献   

12.
A numerical model of liquid fuel spray combustion is developed to study the effects of inlet flow conditions of primary and dilution air on the performance of a swirl‐stabilized axi‐symmetric combustor. The model is based on two‐phase stochastic separated flow approach. A standard kϵ model with logarithmic law of the wall for the near‐wall region is adopted for the solution of the gas phase turbulence. The chemical reaction is taken as a single step, irreversible, global one with the rate determined by the kinetically and diffusionally controlled rates. The liquid spray is divided into a finite number of droplet classes with the size distribution following a probability function. It has been observed that an improved pattern factor and better combustion efficiency can be obtained when both the primary and the dilution air streams enter the combustor with swirl, but in the counter‐rotating directions. However, the combustor pressure loss factor increases for the counter‐rotating flow entries of the primary and the dilution air compared to the co‐rotating air entries or to the swirled primary and non‐swirled dilution air entries. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
在分析回流区分级着火旋流煤粉燃烧器工作原理的基础上,进行了冷模实验研究,根据研究的结果对黄石发电厂5号炉旋流煤粉燃烧器进行了改造,运行试验结果表明,这种新型燃烧器对低挥发份煤具有较好物稳燃性能。  相似文献   

14.
A new type of pulverized coal burner combining a bend with a rough surface taper 60° bluff‐body has been designed. The cold state test showed that behind the rough‐surfaced bluff‐body there exists a larger recirculation zone, recirculation ratio and stronger turbulence, but its pressure drop increases by about 15–20 per cent more than that of the smooth‐surfaced bluff‐body. The hot state test in a one‐dimensional furnace indicates that the rough‐surfaced bluff‐body has much faster ignition, higher flame temperature and higher burnout ratio. A heat balance model was established using a lumped parameter method for the recirculation zone. Through it, the condition of the primary air was derived for flame stability and the strengthening combustion ability of rough surface in bluff‐body was proved. On the basis of a hot state test, numerical stimulation was performed on NOx formation. This suggests that rough‐surfaced bluff‐body only increases the production of NOx a little. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
ExperimentalStudiesonGas-ParticleFlowsandCoalCombustioninNewGenerationSpouting-CycloneCombustorD.X.Wang;Z.H.Ma;X.L.Wang;L.X.Z...  相似文献   

16.
Cold airflow experiments on a small-scale burner model, as well as in situ experiments on a centrally fuel-rich swirl coal combustion burner were conducted. Measurements were taken from within a 300 MWe wall-fired pulverized-coal utility boiler installed with eight of centrally fuel-rich swirl coal combustion burners in the bottom row of the furnace during experiments. Various primary air ratios, flow characteristics, gas temperature and gas species concentrations in the burner region were measured. The results of these analyses show that with decreasing primary air ratio, the swirl intensity of air, divergence angles and maximum length and diameter of the central recirculation zone all increased, and the turbulence intensity of the jet flow peaked but decayed quickly. In the burner nozzle region, gas temperature, temperature gradient and CO concentration increased with decreasing primary air ratio, while O2 and NOx concentration decreased. Different primary air ratios, the gas temperatures and gas species concentrations in the side-wall region varied slightly.  相似文献   

17.
为分析旋流对湍流流动的影响,对并排双旋流模式以及无旋流模式下的流场进行了数值模拟。在冷态下,旋流间的相互作用主要影响回流区形态,旋流极大拓展了湍流大脉动区域,适中的旋流更利于维持双涡结构。在热态下,旋流对回流区总体强度的影响比冷态更强烈,双旋流使凹腔湍流脉动受到抑制。燃烧能显著改变凹腔回流区和旋流回流区形态,增强旋流回流区强度,缩小其尺度,但使凹腔回流区尺度和强度均明显减小。燃烧可改善双涡结构,使气流旋动比湍流脉动具有更强的轴向衰减特性。  相似文献   

18.
Based on previous studies, an improved non-slagging spouting-cyclone combustor with two-stage combustion, organized in perpendicularly vortexing flows, is developed for clean coal combustion applied in small-size industrial furnaces and domestic furnaces. The isothermal model test and the combustion test give some encouraging results. In this study, further improvement of the geometrical configuration was made, a visualization method and a LDA system were used to study the gas-particle flow behavior, and the temperature and gas composition in combustion experiments were measured by using thermocouples and a COSA-6000-CD Portable Stack Analyzer. Stronger recirculation in the spouting zone and the strongly swirling effect in the cyclone zone were obtained in the improved combustor. The combustion temperature distribution is uniform. These results indicate that the improved geometrical configuration of the combustor is favorable to the stabilization of coal flame and the intensification of coal combustion, and it provides a basis for the practical application of this technique.  相似文献   

19.
Improvements were made to a low-NOx axial swirl burner (LNASB), aimed at mitigating slagging in a 600-MWe boiler burning bituminous coal. The new design is referred to as improved low-NOx axial swirl burner (ILNASB). This paper describes investigations of the influence of swirl burner structure on the gas/particle flow characteristics using a three-dimensional particle-dynamics anemometer. In comparing results from both ILNASB and LNASB, a central recirculation zone is seen to form in the region x/d = 0.1–0.3 within the ILNASB. This zone had shifted from the region between primary and secondary air in LNASB to a region between inner and outer secondary air. In the vicinity of the burner outlet, particle volume flux is reduced significantly in the central recirculation zone. In contrast, this flux is high near the central axis in ILNASB, thus concentrating a great fraction of pulverized coal near the central axis. Form the study, the gas/particle flow characteristics of the ILNASB show that the improved burner has the ability to ease slagging and reduce NOx emissions.  相似文献   

20.
This work aims to investigate numerically the catalytic combustion of a catalytically stabilized combustor. The numerical model treated a catalytic channel deposited with Pt and used a plug model of laminar, one‐dimensional, and steady‐state flow. The predicted conversions of mixture and ignition temperatures of surface reaction agreed well with the measured data when a multi‐step mechanism was used for the CH4 surface reaction over Pt. The flame speed of a mixture supported by catalytic surface reaction was found to increase compared with a mixture without a catalytic combustion. CO mole fractions were analysed for three cases—gas reaction, surface reaction, and gas reaction coupled with surface reaction. The case of solely gas reaction produced the most CO emission and the case of solely surface reaction generated the least CO emission. The position where flame ignites was also evaluated numerically. There was only a small difference between the measured and predicted results on the starting points of flame in the catalytic channel. As a result, the plug model was shown to model surface ignition very well, however, it did not predict well the position of flame ignition. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号