首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all-inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage. The system is modelled in the energy systems analyses model energyPRO with a view to investigating how the different storages marginally affect the amount of wind power that may be integrated applying the different storage options and the associated economic costs. Results show the largest system impact but also most costly potential are in the form of electricity storages.  相似文献   

2.
People like to say that we cannot witness evolution because it occurred over a timescale immensely greater than human experience. Here, we show that it is possible to witness, explain, and predict evolution by focusing on technology evolution. We review the evolution of heat transfer devices from the point of view of the constructal law of design and evolution in nature. This is a broad view of the evolution where organs (components) are not stand‐alone devices but play an important role in the ‘live’ finite‐size systems that incorporate them. The larger systems can be human made or natural beings in which overall organization evolved, and continues to evolve. We show that heat transfer technology evolves predictably toward compactness, heat transfer augmentation, lower friction, and lower pumping power expenditure. These features are often misunderstood as ‘competitors’ in the design process, while in fact they are ‘collaborators’ from the perspective of the whole system that moves mass over the surface of the earth. Constructal law predicts that the characteristic size of the organ shifts toward lower thermodynamic imperfection and smaller sizes. In time, complexity increases predictably as larger numbers of high‐density heat flux components become interconnected in finite‐size constructs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This communication presents an assessment of the feasibility of energy storage via refrigerant mass storage within an absorption cycle heat pump with simulated time dependent generator heat input. The system consists of storage volumes with the condenser and absorber of the conventional absorption cycle heat pump to store liquid refrigerant, weak and strong solutions during the generation period, which are required for the heat pump operation during the generation off period. A time dependent mass and energy storage analysis based on mass and energy balance equations for various components of the heat pump system has been carried out to evaluate energy storage concentration and storage efficiency for combined and separate storage schemes for the weak and strong solutions. Two possible performance modes, viz constant pumping ratio or the constant flow of the strong solution from the absorber to the generator have been analysed: the latter is preferable over the former from a practical point of view. Numerical computer simulation has been made for a typical winter day in Melbourne (Australia) with the desired heating load specified. It is found that the concept of refrigerant storage within the absorption cycle heat pump is technically feasible for efficient space heating. The energy storage concentration in the condenser store is slighly higher while that in absorber store is slightly lower for the separate storage mode as compared to the combined storage. However, the combined storage has an advantage of less storage volume and hence is more cost effective than separate storage and the disadvantage of limited system operation due to the decrease of solution concentrations.  相似文献   

4.
The cascaded thermal storage technique has emerged as an important solution for efficient conversion and utilization of thermal energies. In this paper, an exergy optimization was performed for cascaded latent cold/heat storage using multi-stage heat engine model. The optimization solution for both heat storage and cold storage systems was obtained, which was used for guiding the selection of PCMs with two examples presented. Cascaded thermal storage with increased stage number can not only extend temperature band for multi-grade thermal energy, but also reduce the exergy of the outlet HTF. It was found that heat transfer enhancement (improving NTU) is very necessary for a cascaded thermal storage system. The COP of cold energy may be greater than 1, which is also higher than that of heat for the same temperature difference in a cascaded thermal storage system. The increased environment temperature improves the COP of the cascaded cold storage (from 0.54 to 0.68) but reduces that of the cascaded heat storage (from 0.42 to 0.366). In the practical design of the cascaded thermal storage system, the stage number should be determined by balancing economics and system complexity.  相似文献   

5.
The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.  相似文献   

6.
尚鑫  白忠权  高治国 《节能》2012,31(5):25-27
为了克服利用冷却除湿的风冷热泵空调系统机器露点过低、需要再冷和过热、难以适应显热潜热比例的变化、不能蓄能等缺点,提出基于集热再生器溶液除湿的热泵空调系统。通过济南某工程实例研究表明,与冷却除湿空调系统相比较耗电量减少12.3%,利用太阳能加热溶液除湿具有降低空调除湿能耗、利用可再生能源、减少高品位能源消耗等优势。证明太阳能溶液除湿在空调系统中是处理潜热负荷的理想选择,具有较好的节能性。  相似文献   

7.
The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste, if not utilized properly. The major technical constraint that prevents successful implementation of waste heat recovery is due to its intermittent and time mismatched demand and availability of energy. In the present work, a shell and finned tube heat exchanger integrated with an IC engine setup to extract heat from the exhaust gas and a thermal energy storage tank used to store the excess energy available is investigated in detail. A combined sensible and latent heat storage system is designed, fabricated and tested for thermal energy storage using cylindrical phase change material (PCM) capsules. The performance of the engine with and without heat exchanger is evaluated. It is found that nearly 10–15% of fuel power is stored as heat in the combined storage system, which is available at reasonably higher temperature for suitable application. The performance parameters pertaining to the heat exchanger and the storage tank such as amount of heat recovered, heat lost, charging rate, charging efficiency and percentage energy saved are evaluated and reported in this paper.  相似文献   

8.
9.
Renewable energies are gaining importance due to the steadily increasing scarcity of fossil fuels, the ongoing climate change and last but not least the risks which accompany the use of nuclear power. In this growing market, solar thermal power plants offer a centralized, potentially load following electricity production. To serve this need, the integration of thermal energy storage systems is essential. The Moving Bed Heat Exchanger MBHX storage concept for CSP systems using sensible heat transfer medium aims at using a low cost solid storage media. This concept requires intermediate bulk cycles to transfer heat between the solar field and the storage material (the bulk). Heat Transfer Fluids (HTF) such as synthetic oils (mobiltherm 603) are typically used. In this work, granular materials such as sand and rocks are studied to present an additional HTF to represent an efficient and cost-effective alternative. Low cost solid particulates can store and transport heat at temperatures over 1000°C. For the purpose of heat recovery, a moving bed heat exchanger (MBHX) is applied and tested. In this study, the dense granular mass is gravity-driven through a heat exchanger. The performance of the MBHX with the utilization of Sand, Basalt, and a Mixture of Sand and Basalt as a granular material was experimentally investigated. It is found that the effectiveness of the MBHX using a mixture of 50% sand and 50% basalt improved by 30% compared to using sand alone.  相似文献   

10.
Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ~ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.  相似文献   

11.
Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion.  相似文献   

12.
Solar heating systems with seasonal energy storage have attracted an increasing attention over the past decades. However, studies of such systems using a phase change material (PCM) as seasonal storage medium have not been found in the open literature. In this paper a solar heat pump heating system with seasonal latent heat thermal storage (SHPH–SLHTS) is firstly described. This is followed by reporting the development of a simplified mathematical model for a SHPH–SLHTS system. Using the model developed, the operational performances of a SHPH–SLHTS system which provided space heating to a villa building have been investigated by simulation, and simulation results are reported in this paper.  相似文献   

13.
Ice storage is a potential energy saving method for air conditioning systems. An ice slurry is an ideal material for ice storage. The conventional ice slurry producing method using supercooled water suffers from the instability of ice block and depends heavily on electric power. A novel ice slurry producing system utilizing inner waste heat was proposed to improve this situation. This system consists of two major processes: an evaporative supercooling process and a liquid dehumidification process. Both theoretical and experimental works are presented about these two processes. Simulation analysis has been made on the evaporative supercooling process and the performance of the whole system. Experiments were performed about the two processes. The theoretical conclusion agrees well with the experimental results. Compared with the conventional system, this new system can alleviate the burden on electric power and raise the efficiency. Those improvements are essentially attributed to the reutilization of the inner waste heat generated from the system itself.  相似文献   

14.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.  相似文献   

15.
Polygeneration systems, designed for providing multiple energy services like hydrogen, heat and electricity, represent a possible solution for the transition to sustainable low-carbon energy systems, thanks to a substantial increase in the overall efficiency. A further step to reach zero-carbon energy systems can be done by using renewables as primary sources.In this study a biogas-based polygeneration system for the combined hydrogen, heat and electricity production is designed and analyzed from energy and economic points of view.The system consists of four sections: a biogas processing unit consisting in an autothermal reactor and a water gas shift reactor, an SOFC power unit, a hydrogen separation unit and a hydrogen compression/storage unit. The syngas generated in the autothermal reforming reactor is split in two fluxes: the first one is sent to the SOFC power unit for generating electricity and heat, the second one is sent to the water gas shift reactor to increase the hydrogen content. The hydrogen rich gas exiting the shifter, purified in the hydrogen separation unit (hydrogen quality is equal to 99.995%), is then compressed up to 820 bars and stored.The system behavior and the energy performances have been investigated by using the numerical simulation based on thermo-electrochemical models. Four operating conditions, related to different SOFC loads (from 30% to 100%), have been analyzed. The evaluated overall efficiencies range from 68.5% to 72.3% and the energy saving, calculated with respect to the separate production of hydrogen, heat and electricity, ranges from about 8% to 26%.The economic assessment, carried out by estimating the total capital investment and the plant profitability, has been performed by analyzing different management strategies (Base Load, Peaker, Ancillary Service and Mobility) and accounting for different technological development levels and market scenarios. Results show that the hydrogen production is the main contributor to the system economic sustainability thanks to the highest prices of hydrogen with respect to the electricity ones.  相似文献   

16.
The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a ½ hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on “excess” wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.  相似文献   

17.
The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers.  相似文献   

18.
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power.Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.  相似文献   

19.
The performance of a boiler with a built-in thermal storage unit is presented. The thermal storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the thermal storage unit makes it possible to heat even when the boiler is not operating, thus increasing the heating efficiency. A system with three components is described. The model of the system and the mathematical model were made using the TRNSYS program package and a test reference year (TRY). The degree of efficiency, which optimizes the thermal storage volume and the heating power of the boiler, was determined. The thermal storage must also ensure that the heat is stored at the highest possible exergy level, and complete mixing of the water is a condition for optimizing the thermal storage. The matching of the boiler’s heating capacity with the thermal storage unit ensures a supply of heat even when the boiler is not operating.  相似文献   

20.
In the present paper the performance of a waste heat recovery power generation system based on second law analysis is investigated for various operating conditions. The temperature profiles across the heat recovery steam generator (HRSG), network output, second law efficiency and entropy generation number are simulated for various operating conditions. The variation in specific heat with exhaust gas composition and temperature are accounted in the analysis and results. The effect of pinch point on the performance of HRSG and on entropy generation rate and second law efficiency are also investigated. The second law efficiency of the HRSG and power generation system decreases with increasing pinch point. The first and second law efficiency of the power generation system varies with exhaust gas composition and with oxygen content in the gas. Approximating the exhaust gas as air, and the air standard analysis leads to either underestimation or overestimation of power plant performance on both first law and second law point of view. Actual gas composition and specific heat should be used to accurately predict the second law performance. The present results contribute further information on the role of gas composition, specific heat and pinch point influence on the performance of a waste heat recovery based power generation system based on first and second law of thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号