首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermotropic liquid‐crystalline copoly(ester‐amide)s consisting of three units of p‐oxybenzoate (B), ethylene terephthalate (E) and p‐benzamide (A) were studied by proton nuclear magnetic resonance at 200 and 400 MHz, wide‐angle X‐ray diffraction, and high‐resolution thermogravimetry to ascertain their molecular and supermolecular structures, thermostability and kinetics parameters of thermal decomposition in both nitrogen and air. The assignments of all resonance peaks of [1H]NMR spectra for the copoly(ester‐amide)s are given and the characteristics of X‐ray equatorial and meridional scans are discussed. Overall activation energy data of the first major decomposition have been evaluated through three calculating techniques. The thermal degradation occurs in three steps in nitrogen and air. The degradation temperatures are higher than 447 °C in nitrogen and 440 °C in air and increase with increasing B‐unit content at a fixed A‐unit content of 5 mol%. The temperatures at the first maximum weight‐loss rate are higher than 455 °C in nitrogen and 445 °C in air and also increase with an increase in B‐unit content. The first maximum weight‐loss rates range between 11.1 and 14.5%min−1 in nitrogen and between 11.9 and 13.5%min−1 in air. The char yields at 500 °C in both nitrogen and air range from 45.8 to 54.3 wt% and increase with increasing B‐unit content. But the char yields at 800 °C in nitrogen and air are quite irregular with the variation of copolymer composition and testing atmosphere. The activation energy and Ln (pre‐exponential factor) for the first major decomposition are usually higher in nitrogen than in air and increase slightly with an increase in B‐unit content at a given A‐unit content of 5 mol%. The activation energy, decomposition order, and Ln (pre‐exponential factor) of the thermal degradation for the copoly(ester‐amide)s in two testing atmospheres, are situated in the ranges of 210–292 kJmol−1, 2.0–2.8, 33–46 min−1, respectively. The three kinetic parameters of the thermal degradation for the aromatic copoly(ester‐amide)s obtained by high‐resolution thermogravimetry at a variable heating rate are almost the same as those by traditional thermogravimetry at constant heating rate, suggesting good applicability of kinetic methods developed for constant heating rate to the variable heating‐rate method. These results indicate that the copoly(ester‐amide)s exhibit high thermostability. The isothermal decomposition kinetics of the copoly(ester‐amide)s at 450 and 420 °C are also discussed and compared with the results obtained based on non‐isothermal high‐resolution thermogravimetry. © 1999 Society of Chemical Industry  相似文献   

2.
A novel high‐resolution thermogravimetry (TG) technique in a variable heating rate mode that maximizes resolution and minimizes the time required for TG experiments has been performed for evaluating the thermal degradation and its kinetics of Kevlar fiber in the temperature range ∼ 25–900°C. The degradation of Kevlar in nitrogen or air occurs in one step. The decomposition rate and char yield at 900°C are higher in air than in nitrogen, but the degradation temperature is higher in nitrogen than in air. The initial degradation temperature and maximal degradation rate for Kevlar are 520°C and 8.2%/min in air and 530°C and 3.5%/min in nitrogen. The different techniques for calculating the kinetic parameters are compared. The respective activation energy, order, and natural logarithm of preexponential factor of the degradation of Kevlar are achieved at average values of 133 kJ/mol (or 154 kJ/mol), 0.7 (or 1.1), and 16 min−1 (or 20 min−1) in air (or nitrogen). The technique based on the principle that the maximum weight loss rate is observed at the minimum heating rate gives thermal degradation results that were in excellent agreement with values determined by traditional TG experiments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 565–571, 1999  相似文献   

3.
An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999  相似文献   

4.
Thermal degradation and kinetics of poly(4‐methyl‐1‐pentene) were investigated by nonisothermal high‐resolution thermogravimetry at a variable heating rate. Thermal degradation temperatures are higher, but the maximum degradation rates are lower in nitrogen than in air. The degradation process in nitrogen is quite different from that in air. The average activation energy and frequency factor of the first stage of thermal degradation for the poly(4‐methyl‐1‐pentene) are 2.4 and 2.8 times greater in air than those in nitrogen, respectively. Poly(4‐methyl‐1‐pentene) exhibits almost the same decomposition order of 2.0 and char yield of 14.3–14.5 wt % above 500°C in nitrogen and air. The isothermal lifetime was estimated based on the kinetic parameters of nonisothermal degradation and compared with the isothermal lifetime observed experimentally. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2201–2207, 1999  相似文献   

5.
In this work, 2‐(3‐p‐bromophenyl‐3‐methylcyclobutyl)‐2‐hydroxyethylmethacrylate (BPHEMA) [monomer] was synthesized by the addition of methacrylic acid to 1‐epoxyethyl‐3‐bromophenyl‐3‐methyl cyclobutane. The monomer and poly(BPHEMA) were characterized by FT‐IR and [1H] and [13C]NMR. Average molecular weight, glass transition temperature, solubility parameter, and density of the polymer were also determined. Thermal degradation of poly[BPHEMA] was studied by thermogravimetry (TG), FT‐IR. Programmed heating was carried out at 10 °C min−1 from room temperature to 500 °C. The partially degraded polymer was examined by FT‐IR spectroscopy. The degradation products were identified by using FT‐IR, [1H] and [13C]NMR and GC‐MS techniques. Depolymerization is the main reaction in thermal degradation of the polymer up to about 300 °C. Percentage of the monomer in CRF (Cold Ring Fraction) was estimated at 33% in the peak area of the GC curve. Intramolecular cyclization and cyclic anhydride type structures were observed at temperatures above 300 °C. The liquid products of the degradation, formation of anhydride ring structures and mechanism of degradation are discussed. © 1999 Society of Chemical Industry  相似文献   

6.
Thermotropic liquid crystalline terpolymers consisting of three units of p-oxybenzoate (B), ethylene terephthalate (E), and m-oxybenzoate (M), were investigated through high-resolution thermogravimetry to evaluate their stability and kinetic parameters of thermal degradation in nitrogen and air. Overall activation energy data of the first major decomposition was calculated through three calculating methods. Thermal degradation occurs in three major steps in both nitrogen and air. Three kinds of degradation temperatures (Td, Tm1, Tm2) are slightly higher and the first maximum weight-loss rates are slightly lower in nitrogen than in air, suggesting a higher thermostability in nitrogen. The thermal degradation temperatures range from 450 to 457°C in nitrogen and 441 to 447°C in air and increase with increasing B-unit content at a fixed M-unit content of 5 mol %. The temperatures at the first maximum weight loss rate range from 452 to 466°C in nitrogen and 444 to 449°C in air and increase slightly with an increase in B-unit content. The first and second maximum weight-loss rates are maintained at almost 9.2–10.8 and 4.0–6.1%/min in nitrogen (11.2–12.0 and 3.9–4.2%/min in air) and vary slightly with copolymer composition. The residues after the first major step of degradation are predicted on the basis of the complete exclusion of ester and ethylene groups and hydrogen atoms and compared with those observed experimentally. The char yields at 500°C in both nitrogen and air are larger than 42.6 wt % and increase with increasing B-unit content. However, the char yields at 800°C in nitrogen and air are different. The activation energy and ln(pre-exponential factor) for the first major decomposition are slightly higher in nitrogen than in air and increase with an increase in B-unit content at a given M-unit content of 5 mol %. There is no regular variation in the decomposition order with the variation of copolymer composition and testing atmosphere. The activation energy, decomposition order, and ln(pre-exponential factor) of the thermal degradation for the terpolymers are located in the ranges of 212–263 kJ mol−1, 2.4–3.5, 33–41 min−1, respectively. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2911–2919, 1999  相似文献   

7.
Two series of thermotropic liquid crystalline copolyesters containing mainly the p‐oxybenzoate unit were studied by thermogravimetry to ascertain the kinetic parameters of their thermal degradation by six multiple heating‐rate techniques for the first time. The two copolyesters are (1) poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate) and (2) poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate). The effect of copolymer composition, degradation stage, and test atmosphere on the three kinetic parameters of the thermal degradation in the weight loss range from 5 to 70% is discussed. Comparison of the multiple heating‐rate techniques with single heating‐rate techniques for calculating the kinetic parameters of thermal degradation was made. The respective activation energy, order, and natural logarithm of the frequency factor of the thermal degradation in nitrogen for the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s are between 180 and 230 kJ/mol, between 2.0 and 5.0, and between 28 and 38 min−1 for the first degradation step and between 250 and 390 kJ/mol, between 6.4 and 7.6, and between 38 and 64 min−1 for the second degradation step of the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s with the unit‐B content in the range of 70–75 mol %. The respective activation energy, order, and natural logarithm of frequency factor of the first degradation stage for the poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate) (Vectra) are between 380 and 570 kJ/mol, between 2.0 and 3.1, and between 55 and 68 min−1 in nitrogen and between 160 and 210 kJ/mol, between 0.8 and 1.8, and between 25 and 32 min−1 in air. The best methods of calculating the kinetic parameters of the thermal degradation for the copolymers are suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2016–2028, 1999  相似文献   

8.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

9.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

10.
Thermal degradation of bisphenol A polycarbonate (PC) has been studied in nitrogen and air from room temperature to 900 °C by high-resolution thermogravimetry (TG) with a variable heating rate in response to changes in the sample's degradation rate. A three-step (in nitrogen) or four-step (in air) degradation process of the PC, which was hardly ever revealed by traditional TG, has been found. The initial thermal degradation temperature of the PC is higher in nitrogen than in air, but the three kinetic parameters (activation energy E, decomposition order n, frequency factor Z) of the major degradation process are slightly lower in nitrogen. The average E, n and lnZ values determined by three methods in nitrogen are 154 KJ mol−1, 0.8 and 21 min−1, respectively, which are almost the same as those calculated by traditional TG measurements. © 1999 Society of Chemical Industry  相似文献   

11.
Cellulose dinitrate (CDN), cellulose diacetate (CDA), and cellulose triacetate (CTA) were subjected to high‐resolution thermogravimetry (TG) at a variable heating rate in air. The TG curves, the derivative TG curves, the second derivative TG curves, and heating rate curves are discussed. The thermal degradation temperature and kinetic parameters are presented and compared to those obtained with traditional TG at a constant heating rate. The degradation process of the cellulose esters is speculated. Among the three cellulose esters, CDN exhibits the lowest degradation temperature of (213°C) but the largest degradation activation energy of (237–269 kJ/mol). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 573–578, 1999  相似文献   

12.
Phase behavior of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is investigated by X‐ray powder diffraction (XRD). The XRD patterns at elevated temperature show that there is a co‐existing temperature range of β‐ and δ‐phase during the phase transition process. Additionally, mechanical forces can catalyze the conversion from δ‐ back to β‐phase. Based on the diffraction patterns of β‐ and δ‐phase at different temperatures, we calculate the coefficients of thermal expansion by Rietveld refinement. For β‐HMX, the linear coefficients of thermal expansion of a‐axis and b‐axis are about 1.37×10−5 and 1.25×10−4 °C−1. A slight decrease in c‐axis with temperature is also observed, and the value is about −0.63×10−5 °C−1. The volume coefficient of thermal expansion is about 1.60×10−4 °C−1, with a 2.2% change from 30 to 170 °C. For δ‐HMX, the linear coefficients of thermal expansion of a‐axis and c‐axis are found to be 5.39×10−5 and 2.38×10−5 °C−1, respectively. The volume coefficient of thermal expansion is about 1.33×10−4 °C−1, with a 2.6% change from 30 to 230 °C. The results indicate that β‐HMX has a similar volume coefficient of thermal expansion compared with δ‐HMX, and there is about 10.5% expansion from β‐HMX at 30 °C to δ‐HMX at 230 °C, of which about 7% may be attributed to the reconstructive transition.  相似文献   

13.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

14.
An imide ring‐performed dicarboxylic acid bearing one hexafluoroisopropylidene and two ether linkages between aromatic rings, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane (II), was prepared from the condensation of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane and trimellitic anhydride. A novel series of poly(amide‐imide)s having inherent viscosities of 0.72 ∼ 1.86 dL g−1 was prepared by the triphenyl phosphite‐activated polycondensation from the diimide‐diacid (II) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. Several of the resulting polymers were soluble in polar amide solvents, and their solutions could be cast into transparent, thin, flexible films having good tensile properties and high thermal stability. The 10% weight loss temperatures were all above 495°C in air or nitrogen atmosphere, and the glass transition temperatures were in the range of 237°–276°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 823–831, 1999  相似文献   

15.
Hydroisomerization of meta‐xylene was carried out using catalysts containing 0.15–0.60 wt% Pt on H‐ZSM‐5 zeolite, in a pulsed microreactor system connected to a gas chromatograph at a flow of hydrogen of 20 cm3 min−1 and temperatures of 275–500 °C. Increasing temperature, increased isomerization with low rates. Increasing Pt content of the catalyst, decreased hydrodealkylation considerably via masking strong acid sites as revealed by temperature programmed desorption of ammonia measurements. Formation of trimethylbenzenes was inhibited by Pt incorporation in the H‐ZSM‐5 zeolite. The activation energies obtained for meta‐xylene hydroisomerization were relatively low (24.4–61.6 kJ mol−1) on all catalysts under study. Para‐xylene yields in the xylenes mixture of product relative to the corresponding thermodynamic equilibrium values amount to about 0.8–0.9 at temperatures of 400–500 °C but were lower at lower temperatures. © 1999 Society of Chemical Industry  相似文献   

16.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

17.
The polynitro imidazole derivative 1,5‐dinitro‐2,6‐bis(trinitromethyl)‐3a,4a,7a,8a‐tetrahydro‐[1,4]dioxino[2,3‐d:5,6‐d′]diimidazole (DNTNDI) was synthesized through nitration of 2‐(dinitromethylene)‐1H‐imidazol‐4‐ol in HNO3/Ac2O followed by cyclization of the di‐enol. It was characterized by NMR, IR, elemental analysis, and single‐crystal X‐ray diffraction analysis. Compound DNTNDI crystallizes in the orthorhombic space group P2(1)2(1)2(1). The thermal decomposition was studied with thermogravimetry/derivative thermogravimetry (TG/DTG) in a nitrogen atmosphere with a heating rate of 5 K min−1. The TG/DTG analysis indicated that DNTNDI has 97.64 % mass loss between 127 °C and 173 °C by undergoing exothermic decomposition. The density of DNTNDI was determined as 1.906 g cm−3 at 293 K with an Ultrapycno 1000 Pycnometer. The denotation velocity and denotation pressure of DNTNDI were calculated as 9325 m s−1 and 40 GPa by applying the LOTUSES (version 1.4) code, respectively. The oxygen balance of DNTNDI is 0 and its oxygen content amounts to 51.78 %, which is superior to that of new generation of chlorine‐free oxidizer ammonium dinitramide (ADN).  相似文献   

18.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

19.
Thermal degradation and kinetics of polyethersulfone (PES) chips were studied in air, nitrogen, helium, and argon from room temperature to 790°C by high‐resolution thermogravimetry (TG) at a variable heating rate in response to changes in the sample's degradation rate. In the four atmospheres, a two‐step degradation process in air, argon, and helium or a three‐step degradation process in nitrogen of the PES were found in this investigation. In particular, the three‐step degradation process in nitrogen of the PES revealed by the high‐resolution TG was hardly ever observed by a traditional TG. The initial thermal degradation temperature of the PES increases with the testing atmosphere in the following order: air < argon < helium < nitrogen but the activation energy of the first major degradation of PES increases in a different order: argon < nitrogen < helium < air. The degradation temperature, the temperature at the maximum weight‐loss rate, the maximum weight‐loss rate [(dα/dT)m1 and (dα/dT)m2], char yield at 790°C, and activation energy of the first major degradation process obtained by the high‐resolution TG were compared with those by traditional TG. The PES exhibits the largest (dα/dT)m1 and the greatest char yield at 790°C in helium but the largest (dα/dT)m2 and smallest char yield in air. A significant dependency of the thermal decomposition of the polymers on the physicochemical properties (density, thermal conductivity, and oxidative ability) of the testing atmospheres is elaborated for the first time. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3631–3637, 2003  相似文献   

20.
Polyamides were synthesized by interfacial polycondensation of 2,3‐bis(4‐chloroformylphenyl)quinoxaline (BCFPQ) and several aliphatic diamines using a phase transfer catalyst, and their adhesive property for stainless steel was investigated. The inherent viscosity of the obtained polyamides ranged from 0.37 to 1.24 dL g−1. The glass transition temperatures of the polyamides ranged between 154 and 201°C, and their thermal decomposition temperatures were above 450°C. The polyamides were soluble in several organic solvents, including m‐cresol, N‐methyl‐2‐pyrrolidone (NMP), and formic acid. The adhesive property for stainless steel was examined by a standard tensile test. One member of the series, polyamide P8, derived from BCFPQ and 1,8‐octanediamine, displayed high tensile strength with values of 232 kgf cm−2 at 20°C, 173 kgf cm−2 at 120°C, and 137 kgf cm−2 at 180°C. Thus, the tensile strength of P8 decreased at 180°C, but the decrease was much smaller than that of an epoxy resin in wide use as a metal adhesive. Heat distortion temperature, measured by thermal mechanical analysis, of P8 was 191°C. This suggested that P8 possessed high thermal resistance in metal adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1366–1370, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号