首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E.J. Robinette  G.R. Palmese 《Polymer》2004,45(18):6143-6154
A common method for toughening thermoset resins is the addition of butadiene-acrylonitrile based rubber modifiers. A difficulty experienced by diglycidyl ether of bisphenol-A (DGEBA) vinyl esters (VE) compared to other thermosets is the solubility of the butadiene-acrylonitrile modifier. In this study, a miscible system was prepared by reducing the VE monomer molecular weight to 540 g/mol from industrially used monomers possessing molecular weights greater than 700 g/mol. A main objective of this study was to toughen the vinyl ester while limiting plasticization by varying rubber reactivity and concentration. All modified samples experienced a significant increase in fracture toughness with some degree of plasticization, as shown by losses in modulus and glass transition temperature (Tg). Epoxy terminated rubber (ETBN) yielded a higher toughness than vinyl terminated rubber (VTBN) due to the difference in rubber particle formation and resulting morphology. Chemical linkage of VTBN to the vinyl ester matrix hindered complete phase separation, but helped the retention of mechanical properties when compared to ETBN.  相似文献   

2.
The influence of vinyl ester/styrene network structure on thermal and mechanical properties was investigated. The crosslink density of the resins was altered by changing the molecular weight of the vinyl ester oligomer and by varying the amount of styrene used during the crosslinking reaction leading to variations in both the physical network structure and the chemical composition of the polymeric networks. The glass transition temperatures of the network polymers were found to increase systematically with increasing crosslink density without the additional influence of the chemical composition as determined from both differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The breadth of the glass transition regions increased with crosslink density for the DSC data, but the breadth assessed from the DMA data did not vary significantly for the network materials. A secondary relaxation was observed for the materials using DMA, and this relaxation did not appear to be significantly affected by changes in either the crosslink density or the composition of the network. Cooperativity studies involving time–temperature scaling of dynamic mechanical data in the glass formation temperature region were also conducted. The degree of segmental cooperativity at Tg appeared to be primarily influenced by the chemical composition of the networks. These issues dealing with the structure of the networks provided insight into the associated fracture properties in the glassy state (ambient temperature). Specifically, an empirically based linear correlation was found between the fracture toughness of the networks and the cooperative domain size at the glass transition temperature normalized by the crosslink density. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 917–927, 2001  相似文献   

3.
Toughening mechanisms in core-shell rubber modified polycarbonate   总被引:1,自引:0,他引:1  
D.S. Parker  H-J. Sue  J. Huang  A.F. Yee   《Polymer》1990,31(12):2267-2277
We have conducted a study of toughening mechanisms in rubber modified polycarbonate systems in order to evaluate the sequence of deformation events which improve fracture toughness. We conclude that cavitation of the rubber particles occurs first, followed by massive shear yielding of the matrix material. The size and shape of the deformation zone created in front of the crack is governed by the mechanical properties of the rubber particles and the stress state at the crack tip. The importance of using a variety of analytical techniques to characterize deformation mechanism is also illustrated.  相似文献   

4.
张绍华 《粘接》2014,(3):54-57
在VAE乳液生产工艺中引入改性单体叔碳酸乙烯酯,通过调整改性单体的加入量、选择合适的乳化剂和保护胶体的品种和用量,生产出符合DBJ/T01-63-2002《外墙外保温用聚合物砂浆质量检验标准》并适合喷雾干燥生产可再分散乳胶粉的三元共聚乳液。  相似文献   

5.
The morphologies of styrene (St) crosslinked divinylester resins (DVER) modified with elastomers were analyzed. The primary focus of this study was on the effect of the molecular weight of the resins, the reactivity of the elastomeric modifiers, and the temperature of curing. All of these variables have a strong influence on both the miscibility and the viscosity of the system, affecting the phase‐separation process that takes place in the unreacted and the reacting mixture. The selected liquid rubbers were carboxyl‐terminated poly(butadiene‐co‐acrylonitrile) (CTBN), a common toughening agent for epoxy resins, and an almost unreactive rubber with the DVER; and St comonomers and vinyl‐terminated poly(butadiene‐co‐acrylonitrile (VTBN), a reactive rubber. Different morphologies potentially appear in these systems: structures formed by DVER–St nodules surrounded by elastomer and spanning the whole sample; dual cocontinuous micron‐size domains formed by elastomer‐rich or resin‐rich domains; and a continuous DVER–St‐rich phase with included complex nodular domains. These microstructures can be varied by just changing the nature and concentration of the elastomer, the molecular weight of the resin, or the curing temperature. The appearance of these morphologies is discussed as a function of the above variables. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 274–283, 2003  相似文献   

6.
乙烯基酯树脂的开发与应用   总被引:1,自引:0,他引:1  
林葆光 《上海涂料》2000,38(4):17-20
介绍了乙烯基酯树脂的合成工艺、分类、性能等特点、化学结构,以及作为新一代防腐蚀树脂在石油、化工、建筑、涂料行业的应用。  相似文献   

7.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

8.
The curing kinetics of dimethacrylate-based vinyl ester resins were studied by scanning and isothermal DSC, gel time studies, and by DMTA. The rate of polymerization was raised by increased methyl ethyl ketone peroxide (MEKP) concentration but the cocatalyst, cobalt octoate, retarded the reaction rate, except at very low concentrations. By contrast, the gel time was reduced for all increases in either peroxide or cobalt concentration. This contradictory behavior was explained by a kinetic scheme in which the cobalt species play a dual role of catalyzing the formation of radicals from MEKP and of destroying the primary and polymeric radicals. The scanning DSC curves exhibited multiple peaks as observed by other workers, but in the present work, these peaks were attributed to the individual influence of temperature on each of fundamental reaction steps in the free radical polymerization. Physical aging appeared to occur during the isothermal polymerization of samples cured below the “fully cured” glass transition temperature (Tg). For these undercured materials, the difference between the DSC Tg and the isothermal curing temperature was approximately 11°C. Dynamic mechanical analysis of a partially cured sample exhibited anomalous behavior caused by the reinitiation of cure of the sample during the DMTA experiment. For partially cured resins, the DSC Tg increased monotonically with the degree of cure, and this dependence was fitted to an equation related to the Couchman and DiBenedetto equations. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 769–781, 1997  相似文献   

9.
The morphology–toughness relationship of vinyl ester resins was studied as a function of their modification. Bisphenol A based and novolac‐based vinyl ester resins were modified by a star‐shaped polyether polymer with vinyl and hydroxyl functionalities and/or by a polyisocyanate. The polyisocyanate‐containing systems were termed vinyl ester/urethane hybrids. The morphology of the crosslinked resins was studied with dynamic mechanical thermal analysis and atomic force microscopy with ion‐eroded specimens and discussed. The toughness of the crosslinked resins was assessed by the linear elastic fracture mechanics with compact tension specimens. The fracture toughness and energy changed fairly linearly as functions of Mc and Mc0.5, respectively, where Mc is the mean molecular mass between crosslinks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4012–4022, 2006  相似文献   

10.
对双酚A型环氧乙烯基酯树脂及应用于各种纤维增强层合板的耐碱性进行了分析,认为:要提高纤维增强复合材料的耐碱性,需选择耐碱性较好并能与纤维良好浸润的乙烯基树脂,选择锦纶等耐碱性较好的有机纤维。  相似文献   

11.
Effect of loading rate on toughness characteristics of hybrid rubber-modified epoxy was investigated. Epoxy was modified by amine-terminated butadiene acrylonitrile (ATBN) and recycled tire. Samples were tested at various loading rates of 1–1000 mm/min. Fracture toughness measurements revealed synergistic toughening in hybrid system at low loading rates (1–10 mm/min); hybrid system exhibited higher fracture toughness value in comparison with the ATBN-modified resin with same modifier content. However, synergistic toughening was eliminated by increasing the loading rate. At higher loading rates (10–1000), the fracture toughness of hybrid system decreased gradually to the level lower than that of ATBN-modified epoxy. Fractography of the damage zones showed the toughening mechanisms of ATBN-modified system was less affected by increasing the loading rate compared to that of hybrid system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Two-dimensional nanosheets are highly effective tougheners for vinyl ester resins. The toughening effect is related to the high specific surface area and unique two-dimensional planar structure of the nanosheets. In this study, a coupling agent γ-(2,3-epoxypropoxy) propytrimethoxysilane (Kh-560) was used to modify MXene nanosheets (M-MXene) for use in toughening vinyl ester resin. The mechanical properties, including the tensile strength, flexural strength, Young’s modulus and elongation, of neat vinyl ester resin and vinyl ester resin modified with MXene and M-MXene were investigated. The results showed that modification significantly improved the mechanical properties of the vinyl ester resin. The tensile and flexural strengths of the MXene-nanosheet-modified vinyl ester resin were 27.20% and 25.32% higher, respectively, than those of the neat vinyl ester resin. The coupling agent improved the interfacial compatibility between the MXene nanosheets and vinyl ester resin, which resulted in the tensile and flexural strengths of the M-MXene-nanosheet-modified vinyl ester resin being 52.57% and 54.60% higher, respectively, than those of the neat vinyl ester resin for a loading quantity of nanosheets of only 0.04 wt %, which is economically viable. The main mechanisms by which the nanosheets toughen the resin are crack deflection and crack pinning.  相似文献   

13.
通过粘度分析和力学性能、阻燃性能测试,研究了以甲基丙烯酸甲酯(MMA)作活性稀释剂的乙烯基酯树脂的流变性能及其对复合材料性能的影响。结果表明:常温下MMA能有效降低乙烯基酯树脂的粘度,20~40℃下,添加量>30%时,树脂体系的粘度在450 mPa.s以内,可应用于RTM工艺;固化后该复合材料的拉伸、弯曲强度、抗冲击性能、层间剪切强度和阻燃性能优异,可应用于高性能阻燃型复合材料构件的制备。  相似文献   

14.
The experimental characterization of the time-dependent properties of fatty acid-based vinyl ester resins with reduced styrene content and emissions was conducted and compared with that of various commercial vinyl ester (VE) resins. Constant heating rate and isothermal, multifrequency sweep experiments were conducted over a wide temperature range using dynamic mechanical analysis. Storage and loss modulus master-curves were formed using time–temperature superposition (TTSP) and analyzed to quantify the molecular relaxation behavior using accepted techniques and theories. Special attention was focused on determining the effect of reducing styrene weight percent on the derived viscoelastic properties. The fatty acid-based VE resins were found to have similar or slightly inferior thermomechanical properties and a more pronounced viscoelastic response compared with the commercial resins. However, the research definitively demonstrates that the evaluated fatty acid VE resins are a viable replacement to commercial resins in certain applications with concomitant attractive environmental benefits. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A novel toughening modifier, styrene–isoprene–butadiene rubber (SIBR), was used to improve the impact resistance and toughness of acrylonitrile–butadiene–styrene (ABS) resin via bulk polymerization. For comparison, two kinds of ABS samples were prepared: ABS‐1 was toughened by a conventional modifier (a low‐cis polybutadiene rubber/styrene–butadiene block copolymer), and ABS‐2 was toughened by SIBR. The mechanical properties, microstructures of the as‐prepared materials, and fracture surface morphology of the specimens after impact were studied by instrumented notched Izod impact tests and tensile tests, transmission electron microscopy, and scanning electron microscopy, respectively. The mechanical test results show that ABS‐2 had a much higher impact strength and elongation at break than ABS‐1. The microscopic results suggested that fracture resistance of ABS‐1 only depended on voids, shear yielding, and few crazing, which resulted in less ductile fracture behavior. Compared with ABS‐1, ABS toughened by linear random SIBR (ABS‐2) displayed the synergistic toughening effect of crazing and shear yielding, which could absorb and dissipate massive energy, and presented high ductile fracture behavior. These results were also confirmed by instrumented impact tests. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The effects of oxirane groups in vinyl ester (VE) resin and reactive diluent on curing characteristics and thermal behavior of cured resins are described. Stoichiometric (0.5:1, sample A) as well as nonstoichiometric (0.5:0.85, sample B) ratios of the diglycidyl ether of bisphenol-A (DGEBA) and methacrylic acid (MA) were used for the synthesis of VE resins. Resin sample B had more residual epoxy groups because of the stoichiometric imbalance of the reactants. VE resins thus obtained were diluted with methyl methacrylate (MMA; 1:1, w/w), and controlled quantities of epoxy groups were introduced by partial replacement of MMA with glycidyl methacrylate (GMA), keeping the overall ratio of resin and reactive diluent constant. Increase of GMA content in resin A or B resulted in a decrease in gel time, indicating that the curing reaction is facilitated by the presence of epoxy groups. An increase in initiator content also reduced the gel time. In the differential scanning calorimetry (DSC) scans, a sharp curing exotherm was observed in the temperature range 107 ± 3–150 ± 1 °C. The onset temperature (Tonset) and peak exotherm temperature (Texo) decreased with increase in GMA content. Heat of curing (ΔH) also increased with increase in GMA content. A broad exotherm was observed after the initial sharp exotherm that was attributed to the etherification reaction. Cured VE resins were stable up to 250–260 °C, and started losing weight above this temperature. Rapid decomposition was observed in the temperature range 400–500 °C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 416–423, 2001  相似文献   

17.
Two commercial vinyl ester resins, Derakane 411‐350 (resin D) and Derakane 411‐350 Momentum (resin M), were characterized. Despite the large quantity of publications in the literature about vinyl ester resins, few experimental results have been reported for resin M. The effect of the styrene content on the mechanical properties and morphological structure was studied. An increase in the styrene content produced a network with a low storage modulus in the rubber state and a glass‐transition temperature. The apparent average molecular weight between crosslink points and glass‐transition temperature were slightly higher for resin D than for resin M. The Fourier transform infrared spectra and molecular weight distributions were similar. However, resin M was tougher than resin D, and this may have been due to the closer structure in the fully cured state. Atomic force microscopy was performed for each cured resin and confirmed the difference in the nanostructures. The main reason for the differences in the developed structures was the use of an accelerator, which influenced the final morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3895–3903, 2006  相似文献   

18.
New vinyl ester systems are prepared using allyl‐functional benzoxazine monomers, 3‐allyl‐6‐methyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazine (pC‐ala) or bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazin‐6‐yl)methane (BF‐ala), as reactive diluents for vinyl ester resins derived from an epoxy resin, diglycidyl ether of bisphenol A, instead of using styrene. Different initiators are used to investigate the copolymerization of allyl function from pC‐ala with vinyl function from vinyl ester resin prepolymer. The temperature dependence of viscosity is studied to demonstrate the retention of processability of the new vinyl ester resins. Dynamic mechanical and thermogravimetric analyses are used to investigate the dynamic mechanical properties and thermal stability of the new resins. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
The objective of this investigation is to characterize various room temperature (RT)‐curable epoxies for vacuum‐assisted resin transfer molding (VARTM) of large structure manufacturing. Six epoxy candidate resins: X‐40, 780‐33, 780‐35, 8601/8602, 8602, 8603, and two vinyl ester resins (VE), 411‐350 and 411‐510A, are physically and thermochemically characterized. All the resins are cured at RT with extended period of time. The degree of cure for 24‐h RT‐cured samples ranges from 70 to 85% for epoxies and is comparable with the baseline VE systems (75%). After 1 year at RT, the degree of cure increases from 90 to 98%. Most of the epoxies show a single transition in dynamic mechanical analysis and differential scanning calorimetry. However, two heterogeneous transitions are observed for the VE systems. The glass transition temperature increases monotonically with exposure time, except X‐40, that rapidly achieves a plateau and remains constant. The degree of cure for the majority of the systems increases logarithmically with RT curing time with excellent fitting (R2 varies from 0.92 to 1). Consistent with the increase in degree of cure, the storage modulus increases and (tan δ)max decreases with time of exposure. A negative correlation between the curing temperature range and the total heat of reaction is observed among the epoxy systems. However, the VE systems show the reverse trend. RT curing epoxy resin (X‐40) shows promising overall result to VE system and can be a viable alternative to VE for VARTM processing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
High‐performance thermosetting resins should have good toughness and stiffness, so simultaneously toughening and stiffening is the main target in developing high‐performance resins. A novel modified cyanate ester resin with improved toughness and stiffness was developed by copolymerizing 2,2′‐bis(4‐cyanatophenyl)isopropylidene (CE) with hyperbranched polyphenylsilsesquioxane (HBPPSi). The mechanical properties and their nature were systematically investigated from the viewpoint of structure‐property relations using positron annihilation lifetime spectroscopy and spectral analyses. It is found that a suitable content of HBPPSi in CE resin can effectively improve toughness and stiffness. In the case of the CE resin modified with 10 wt% HBPPSi, its impact and flexural strengths are 21 kJ m?2 and 148 MPa, respectively, about 2.6 and 1.4 times of those of neat CE resin. The flexural modulus increases from 3.0 (for neat CE resin) to 3.4 GPa. The results of dynamic mechanical analyses also corroborate the static mechanical properties. The improved toughness and stiffness of CE resin can be attributed to the synergistic effect resulting from changes of both polymer chain structure and aggregation state structure. These attractive features of HBPPSi/CE resins suggest that the method proposed herein may be a new approach for the development of high‐performance resins for cutting‐edge industries. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号