首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

The mixture of citrus fruits (orange, grapefruit, mandarin, and lemon) wastes was utilized to obtain high surface area activated carbon (AC) by H3PO4 activation. The production conditions were optimized and the optimum conditions were determined. The optimal-activated carbon (CFWAC) was characterized by various physicochemical techniques. CFWAC was also used as a sorbent for Pb (II) ions from water. Batch experiments were performed to explore the adsorption capacity and mechanism. The Langmuir isotherm and pseudo-second-order kinetic model showed good fitness to the experimental data. The maximum Pb (II) adsorption capacity of CFWAC was found to be 163.93 mg/g.  相似文献   

2.
Surfactant adsorption onto solid surfaces is problematic in some industrial processes, such as in surfactant flooding for enhanced oil recovery. In this work, it was hypothesized that the use of a surfactant delivery system could prevent surfactant adsorption onto solid surfaces. Therefore, the encapsulation of sodium dodecyl sulfate (SDS) into the hydrophobic core of β‐cyclodextrin (β‐CD) to generate a surfactant delivery system (SDS/β‐CD) was evaluated in this work. This complexation was characterized using optical and scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT‐IR). Dynamic adsorption evaluation was applied to determine the effectiveness of the complexation in inhibiting surfactant adsorption onto a variety of solid adsorbents including sand, and mixtures of sand–kaolin and sand–shale. Surfactant adsorption was also evaluated applying the quartz crystal microbalance technology (QCM‐D). The formation and morphology of the complexation was confirmed by optical microscopy, SEM, and FT‐IR. Dynamic adsorption tests demonstrated the effectiveness of the surfactant delivery approach in preventing the adsorption of surfactant (up to 74 % adsorption reduction). The QCM‐D technology confirmed these observations. Several mechanisms were proposed to explain the inhibition of surfactant adsorption including steric hindrance, self‐association of inclusion complexes, hydrophilicity increase, and disruption of hemimicelles formation.  相似文献   

3.
4.
Surfactant adsorption onto solid surfaces is a major issue during surfactant flooding in enhanced oil recovery applications; it decreases the effectiveness of the chemical injection making the process uneconomical. Therefore, it was hypothesized that the adsorption of surfactant onto solid surfaces could be inhibited using a surfactant delivery system based on the complexation between the hydrophobic tail of anionic surfactants and β‐cyclodextrin (β‐CD). Proton nuclear magnetic resonance spectroscopy was used to confirm the complexation of sodium dodecyl sulfate (SDS)/β‐CD. Surface tension analysis was used to establish the stoichiometry of the complexation and the binding constant (Ka). Static adsorption testing was applied to determine the adsorption of surfactant onto different solids (sandstone, shale, and kaolinite). The release of the surfactant from the β‐CD cavity was qualitatively evaluated through bottle testing. The formation of the inclusion complex SDS/β‐CD with a 1:1 stoichiometry was confirmed. The Ka of the complexations increases as salinity and hardness concentration increases. The encapsulation of the surfactant into the β‐CD cavity decreases the adsorption of surfactant onto solid surfaces up to 79 %. Qualitative observations indicate that in the presence of solid adsorbents partially saturated with crude oil, the β‐CD cavity releases surfactant molecules, which migrate towards the oil–water interface.  相似文献   

5.
This proof of concept research evaluates the performance of a surfactant/β‐cyclodextrin (β‐CD) inclusion complex during chemical flooding for enhanced oil recovery. It was hypothesized that the encapsulated surfactant propagates well through the porous media. Sodium dodecyl sulfate (SDS) was used to study the surfactant/β‐CD complexations. Phase behavior analysis was carried out to prepare the most favorable chemical slug formulation. A series of core flooding tests were conducted to determine the efficiency of the SDS/β‐CD inclusion complex in displacing residual oil. Surfactant flooding was conducted as tertiary oil recovery mode (after mature water flooding) by injecting 0.3 pore volume (PV) of the optimum surfactant slug that was chased by 0.3 PV of a polymer slug; followed by continuous water flooding until oil production stopped. The experimental results indicate that the encapsulated surfactant propagates well through the sandpack system and consistently produces higher incremental oil recoveries that range from 40 to 82 % over the incremental oil recovery achieved by conventional surfactant flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号