首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melting, crystallization behaviors, and nonisothermal crystallization kinetics of the ternary blends composed of poly(ethylene terephthalate), poly(trimethylene terephthalate) (PTT) and poly(buthylene terephthalate) (PBT) were studied with differential scanning calorimeter (DSC). PBT content in all ternary blends was settled invariably to be one‐third, which improved the melt‐crystallization temperature of the ternary blends. All of the blend compositions in amorphous state were miscible as evidenced by a single, composition‐dependent glass transition temperature (Tg) observed in DSC curves. DSC melting thermograms of different blends showed different multiple melting and crystallization peaks because of their various polymer contents. During melt‐crystallization process, three components in blends crystallized simultaneously to form mixed crystals or separated crystals depending upon their content ratio. The Avrami equation modified by Jeziorny and the Ozawa theory were employed to describe the nonisothermal crystallization process of two selected ternary blends. The results spoke that the Avrami equation was successful in describing the nonisothermal crystallization process of the ternary blends. The values of the t1/2 and the parameters Zc showed that the crystallization rate of the ternary blends with more poly(ethylene terephthalate) content was faster than that with the lesser one at a given cooling rate. The crystal morphology of the five ternary blends investigated by polarized optical microscopy (POM) showed different size and distortional Maltese crosses or light spots when the PTT or poly(ethylene terephthalate) component varied, suggesting that the more the PTT content, the larger crystallites formed in ternary blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

3.
The isothermal crystallization kinetics of virgin, melt‐mixed, and nucleated specimens of polyethylene terephthalate (PET), polypropylene terephthalate (PPT), and polybutylene terephthalate (PBT) were measured. The purpose of the study was to determine the difference in crystallization rate of PPT, which is to be commercially available in the near future, to the extensively studied, commercially important polyalkylene terephthalates PET and PBT. At equivalent supercooling, the crystallization rate of PPT was between that of PET and PBT, with PBT being the fastest crystallizing polymer. Melt‐mixing virgin materials resulted in a substantial increase in the crystallization rate for all three polyalkylene terephthalates. The addition of talc or sodium stearate as a nucleating agent resulted in a further increase in crystallization rate for all three polyesters. Although the addition of talc or sodium stearate to PPT and PET greatly enhanced crystallization rate, these nucleating agent–containing materials still did not crystallize as fast as PBT melt‐mixed in the absence of any intentionally added nucleating agents. Analysis of the crystallization kinetic data using the Avrami equation showed that melt‐mixing and the addition of sodium stearate resulted in an increase in the average Avrami exponent. This result suggested a change in the mechanism of nucleation toward more sporadic nucleation. For the sodium stearate–nucleated materials, the Avrami exponent was found to increase with increasing crystallization temperature, but a precise explanation of this behavior could not be provided without a knowledge of crystallite morphology. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1296–1307, 2000  相似文献   

4.
Blending of thermotropic liquid crystalline polyesters (LCPs) with conventional polymers could result in materials that can be used as an alternative for short fiber‐reinforced thermoplastic composites, because of their low melt viscosity as well as their inherent high stiffness and strength, high use temperature, and excellent chemical resistance and low coefficient of expansion. In most of the blends was used LCP of 40 mol % of poly(ethylene terephthalate) (PET) and 60 mol % of p‐acetoxybenzoic acid (PABA). In this work, blends of several copolyesters having various PABA compositions from 10 to 70 mol % and poly(butylene terephthalate) (PBT) were prepared and their rheological and thermal properties were investigated. For convenience, the copolyesters were designated as PETA‐x, where x is the mol % of PABA. It was found that PET‐60 and PET‐70 copolyesters decreased the melt viscosity of PBT in the blends and those PBT/PETA‐60 and PBT/PETA‐70 blends showed different melt viscosity behaviors with the change in shear rate, while blends of PBT and PET‐x having less than 50 mol % of PABA exhibited totally different rheological behaviors. The blends of PBT with PETA‐50, PETA‐60, and PETA‐70 showed the morphology of multiple layers of fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1797–1806, 1999  相似文献   

5.
Blends of poly(sulfone of bisphenol A) (PSU) with poly(butylene terephthalate) (PBT) were obtained by direct injection moulding across the composition range. The two components of the blends reacted slightly in the melt state, producing linear copolymers. The slight changes observed in the two glass transition temperatures indicate that the copolymers were present in the two amorphous phases of the blends. The observed reactions and the high viscosity of the matrix of the PSU‐rich compositions led to a very fine morphology which could not be attained in the PBT‐rich compositions due to the low viscosity of the matrix and the direct injection moulding procedure used. This procedure is fast and economically advantageous, but leads to poor mixing. The different morphologies influenced neither the modulus nor the yield stress, which tended to follow the rule of mixtures. However, the low fracture properties of the PBT‐rich compositions contrasted with the ductility behaviour, and even the impact strength of the PSU‐rich blends, which also tended to be proportional to the blend composition. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The phase behavior of blends of semicrystalline aryl polyesters with long methylene segments (? (CH2)n? with n = 5 or 7) in the repeat units has not been much studied. Thus, crystalline/crystalline blends comprising monomorphic poly(pentamethylene terephthalate) (PPT) and polymorphic poly(heptamethylene terephthalate) (PHepT) were prepared and the crystal growth kinetics, polymorphism behavior and miscibility in this blend system were probed using polarized‐light optical microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. RESULTS: The PPT/PHepT blends of all compositions were first proven to be miscible in the melt state or quenched amorphous phase, whose interaction strength was determined (χ12 = ? 0.35), showing favorable interactions and phase homogeneity. Although the spherulites of neat PPT and PHepT could exhibit ring bands at different crystallization temperature (Tc) ranges (100–110 and 50–65 °C, respectively), the spherulites of PPT/PHepT (50/50) blend became ringless in the range 50–110 °C. Growth analysis and polymorphic behavior in the crystalline phases of the blends provided extra evidence for the miscibility between these two crystalline polymers. Spherulitic growth rates of PPT in the PPT/PHepT blends were significantly reduced in comparison with those of neat PPT. In addition, miscible blending of a small fraction of monomorphic PPT (20 wt%) with polymorphic PHepT altered the crystal stability and led to the originally polymorphic PHepT exhibiting only the β‐crystal form when melt‐crystallized at all values of Tc. CONCLUSION: The highly intimate mixing in polymer chains of crystalline PPT and PHepT causes significant disruption in ring‐band patterns and reduction in crystallization rates of PPT as well as alteration in the polymorphic behavior of PHepT. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
A series of blends of furan‐based green polyesters, for eco‐friendly packaging materials, are synthesized. Poly(ethylene 2,5‐furandicarboxylate) (PEF), poly(propylene 2,5‐furandicarboxylate) (PPF), and poly(butylene 2,5‐furandicarboxylate) (PBF) are synthesized by applying melt polycondensation. Blends of the above polyesters with 50/50 w/w composition as well as blends of furanoate/terephthalate (PPF/PPT) are also prepared. The glass temperature along with the crystallization and melting behaviors of melt quenched blends are studied aiming at understanding their dynamic state and miscibility. Based on their Tg and crystallization behavior, PEF/PPF shows dynamic homogeneity and miscibility whereas PPF/PBF and PEF/PBF exhibit partial miscibility and immiscibility, respectively. In an effort to dynamically homogenize the compounds, reactive blending is applied and the behavior of the resulting blends is monitored following quenching. A profound improvement in blend homogenization is observed with increasing melt mixing time for the PPF/PPT sample, evidenced by the single glass temperature and by the narrowing in liquid‐to‐glass regime. The obtained single glass temperature together with the suppressed tendency for crystallization with increasing mixing time are taken as evidences of dynamic and thermodynamic homogeneity.  相似文献   

8.
The chain extension reaction in poly(butylene terephthalate) (PBT) melt was studied in detail. A high‐reactivity diepoxy, diglycidyl tetrahydrophthalate, was used as a chain extender that can react with the hydroxyl and carboxyl end groups of PBT at a very fast reaction rate and a relatively high temperature. A Haake mixer 600 was used to record the torque during the chain extension reaction. The data show that this chain extension reaction could be completed within 2 to 3 min at temperatures above 250°C, and the reaction time decreased very fast with an increase in the temperature. Shear rate also had some effects on the reaction rate. The effect of the diepoxy chain extender on the flowability, thermal stability, and mechanical properties of PBT were investigated. The melt flow index (MFI) of the chain‐extended PBT dramatically decreased as the diepoxy was added to PBT. In addition, the notched Izod impact strength and elongation‐at‐break of the chain‐extended PBT also increased. The chain‐extended PBT is more stable thermally. Compared with the conventional solid post‐polycondensation method, this approach is simpler and cheaper to obtain high‐molecular‐weight PBT resins. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1827–1834, 1999  相似文献   

9.
The effect of glass fibers on the crystallization of poly(butylene terephthalate) (PBT) was investigated by crystallization kinetics analysis under isothermal and nonisothermal conditions. From the crosspolar optical micrographs of melt‐ and solvent‐crystallized PBT composites, the glass fibers were found to increase the number density and decrease the size of crystallites. The glass fibers provided heterogeneous nucleation sites, and thus enhanced the overall rate of PBT crystallization in isothermal experiments. However, the Avrami exponent and the regime transitions were not significantly affected by the presence of glass fibers. For the nonisothermal kinetics of PBT composites, the model prediction was excellent in most ranges of crystallization, but it deviated above 70% of crystallization especially at fast cooling rates (>40°C/min). This discrepancy of the model seemed to result from the growth regime transitions, which were clearly observed especially at high undercoolings. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 576–585, 2000  相似文献   

10.
The crystallization kinetics of poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and their copolymers poly(1,4‐butylene‐co‐ethylene terephthalate) (PBET) containing 70/30, 65/35 and 60/40 molar ratios of 1,4‐butanediol/ethylene glycol were investigated using differential scanning calorimetry (DSC) at crystallization temperatures (Tc) which were 35–90 °C below equilibrium melting temperature . Although these copolymers contain both monomers in high proportion, DSC data revealed for copolymer crystallization behaviour. The reason for such copolymers being able to crystallize could be due to the similar chemical structures of 1,4‐butanediol and ethylene glycol. DSC results for isothermal crystallization revealed that random copolymers had a lower degree of crystallinity and lower crystallite growth rate than those of homopolymers. DSC heating scans, after completion of isothermal crystallization, showed triple melting endotherms for all these polyesters, similar to those of other polymers as reported in the literature. The crystallization isotherms followed the Avrami equation with an exponent n of 2–2.5 for PET and 2.5–3.0 for PBT and PBETs. Analyses of the Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT and PET had higher growth rate constant Go, and nucleation constant Kg than those of PBET copolymers. © 2001 Society of Chemical Industry  相似文献   

11.
王琳  叶敏  文珍稀  王依民 《合成纤维》2010,39(12):22-25
通过对Ticona公司的聚对苯二甲酸丁二醇酯(PBT)切片性能的测试,分析了其热性能、结晶性能以及流变性能。实验结果表明:该种熔喷专用PBT切片熔点为224.7℃,分解温度为382.3℃;随着降温速率的增大,体系结晶峰值温度降低,结晶速率加快;随着体系温度的升高,PBT熔体非牛顿指数增大,体系流动性增强,易于熔喷纺丝。  相似文献   

12.
Thermal properties and non‐isothermal melt‐crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(lactic acid) (PLA) blends were investigated using differential scanning calorimetry and thermogravimetric analysis. The blends exhibit single and composition‐dependent glass transition temperature, cold crystallization temperature (Tcc) and melt crystallization peak temperature (Tmc) over the entire composition range, implying miscibility between the PLA and PTT components. The Tcc values of PTT/PLA blends increase, while the Tmc values decrease with increasing PLA content, suggesting that the cold crystallization and melt crystallization of PTT are retarded by the addition of PLA. The modified Avrami model is satisfactory in describing the non‐isothermal melt crystallization of the blends, whereas the Ozawa method is not applicable to the blends. The estimated Avrami exponent of the PTT/PLA blends ranges from 3.25 to 4.11, implying that the non‐isothermal crystallization follows a spherulitic‐like crystal growth combined with a complicated growth form. The PTT/PLA blends generally exhibit inferior crystallization rate and superior activation energy compared to pure PTT at the same cooling rate. The greater the PLA content in the PTT/PLA blends, the lower the crystallization rate and the higher the activation energy. Moreover, the introduction of PTT into PLA leads to an increase in the thermal stability behavior of the resulting PTT/PLA blends. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The melting behavior of poly(butylene terephthalate‐co‐diethylene terephthalate) and poly(butylene terephthalate‐co‐triethylene terephthalate) copolymers was investigated by differential scanning calorimetry after isothermal crystallization from the melt. Multiple endotherms were found for all the samples, and attributed to the melting and recrystallization processes. By applying the Hoffman‐Weeks' method, the equilibrium melting temperatures of the copolymers under investigation were obtained. Two distinct peaks in the crystallization exothermic curve were observed for all the samples. Both of them appeared at higher times than that of PBT, indicating that the introduction of a comonomer decreased the crystallization rate. The observed dependence of this latter on composition was explained on the basis of the content of ether–oxygen atoms in diethylene and triethylene terephthalate units, and of the different sizes of these units. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3545–3551, 2001  相似文献   

14.
The crystalline morphologies of PBT (poly butylene terephthalate) and its glass fiber reinforced composite systems were investigated in a thin‐film form by polarized optical microscopy and wide‐angle X‐ray diffraction. Three different types of PBT morphology were identified in the Maltese cross pattern: 45° cross pattern (usual type) by solvent crystallization, 90° cross pattern (unusual type) by melt crystallization at low crystallization temperature, and mixed type by melt crystallization at crystallization temperatures higher than 160°C. The glass fibers increased the number density of spherulites and decreased the size of crystallites acting as crystallization nucleation sites without exhibiting trans‐crystallinity at the vicinity of the glass fiber surfaces. Finally, the storage modulus was analyzed by using a dual‐phase continuity model describing the modulus by the power‐law sum of the amorphous‐ and crystalline‐phase moduli. The crystalline‐phase modulus was extracted out from the PBT polymer and composite systems containing different amount of crystallinity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 478–488, 2002  相似文献   

15.
Nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT)/glass fiber (GF) and PBT/epoxidized ethylene propylene diene rubber (eEPDM)/GF composites were investigated by differential scanning calorimetry (DSC) at a cooling rates of 2.5, 5, 10, and 20 °C/min, respectively. Morphologies of samples were observed with scanning electron microscopy and polarized optical microscopy. The specimens were prepared by melt blending. Analyses of the melt crystallization data by various macrokinetic models such as Jeziorny‐modified Avrami, Liu–Mo models, and Lauritzen–Hoffman equation revealed that GF accelerated the crystallization rate of PBT; furthermore, the eEPDM had two functions: on the one hand, eEPDM promoted PBT to form nuclei; on the other hand, eEPDM hindered the diffusion of polymer chains, but the nucleation effect exceeded the diffusion effect, thus, the eEPDM could increase the crystallization rate of PBT in PBT/eEPDM/GF. These results were further supported by the effective activation energy calculated by isoconversional method of Friedman. POLYM. ENG. SCI., 59:330–343, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
Poly(butylene terephthalate) (PBT) crystallization behavior is modified by blending it with acrylonitrile‐butadiene‐styrene copolymers (ABS). The effects of ABS on melting and crystallization of PBT/ABS blends have been examined. Most ABS copolymers of different rubber content and styrene/acrylonitrile ratios studied showed little effect on the melting behavior of PBT crystalline phase. However, ABS copolymer with high acrylonitrile content had a significant effect on the crystallization behavior of the PBT/ABS blends. The nucleation rate of the PBT crystalline phase decreased due to the presence of the high acrylonitrile content ABS, whereas the spherulitic growth rate increased significantly. These phenomena are attributed to changes in nucleation and growth mechanisms of PBT crystalline phase promoted by ABS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 423–430, 1999  相似文献   

17.
Polyester nanocomposites based on poly(butylene terephthalate) (PBT) and carbon nanotube (CNT) were prepared by simple melt blending using a twin‐screw extruder. There is significant dependence of the thermal, rheological, and mechanical properties of the PBT nanocomposites on the concentration and dispersion state of CNT. The storage and loss moduli of the PBT nanocomposites increased with increasing frequency, and this enhancing effect was more pronounced at lower frequency region. The nonterminal behavior for the PBT nanocomposites was attributed to the nanotube–nanotube or polymer–nanotube interactions, and the dominant nanotube–nanotube interactions at high CNT content resulted in the formation of the interconnected network‐like structures of CNT in the PBT nanocomposites. The incorporation of a small quantity of CNT into the PBT matrix can substantially improve the mechanical properties, the heat distortion temperature, and the thermal stability of the PBT nanocomposites. The unique character of CNT dispersed in the PBT matrix resulted in the physical barrier effect against the thermal decomposition, leading to the improvement in the thermal stability of the PBT nanocomposites. This study also provides a design guide of CNT‐reinforced PBT nanocomposites with a great potential for industrial uses. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Isothermal and non‐isothermal crystallization kinetics of poly(l ‐lactic acid)/poly(butylene terephthalate) (PLLA/PBT) blends containing PLLA as major component is detailed in this contribution. PLLA and PBT are not miscible, but compatibility of the polymer pair is ensured by interactions between the functional groups of the two polyesters, established upon melt mixing. Crystal polymorphism of the two polyesters is not influenced by blending, as probed by wide‐angle X‐ray analysis. The addition of PLLA does not affect the temperature range of crystallization kinetics of PBT, nor the crystallinity level attained when the blends are cooled from the melt at constant rate. Conversely, PBT favors crystallization of the biodegradable polyester. The addition of PBT results in an anticipated onset of crystallization of PLLA during cooling at a fixed rate, with a sizeable enhancement of the crystal fraction. Isothermal crystallization analysis confirmed the faster crystallization rate of PLLA in the presence of PBT. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40372.  相似文献   

19.
1,3,5‐Benzenetrisamide‐based supramolecular nucleating agents for poly(butylene terephthalate) (PBT) are reported. 1,3,5‐Benzenetrisamides combine excellent thermal stability with chemical resistance, basic requirements for the use in high‐melting thermoplastics. To establish structure–property relationships, the central core and peripheral substituents are varied systematically. Dissolution and crystallization behavior of the additives in the PBT melt and the crystallization temperature of PBT are investigated as a function of the additive concentration. Efficient nucleating agents can increase the crystallization temperature of PBT by 10.6 °C to 199.1 °C. A visualization of supramolecular nano‐objects formed in the polymer melt is provided.

  相似文献   


20.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号