首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(styrene‐co‐acrylonitrile) (SAN), of which the content of acrylonitrile (AN) repeating unit is 32 wt % (SAN32), was blended with poly(butadiene‐co‐acrylonitrile) (NBR). The effects of AN repeating unit content in NBR on the miscibility, morphology, and physical properties of SAN32/NBR (70/30 by weight) blends were studied. Differential scanning calorimetry and the morphology observed by transmission electron microscopy showed that the miscibility between SAN32 and NBR was increased as the AN content in NBR was increased up to 50 wt %. The impact strength and some other mechanical properties of the blends had the maximum value when the AN content in NBR was 34 wt %. In the measurement of viscoelasticity at melt state, SAN32/NBR blends showed yield behavior at low shear rate, and this behavior was most evident when the AN content in NBR was 34 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1861–1868, 2000  相似文献   

2.
The compatibilizing effect of poly(styrene-co-acrylonitrile) (SAN) whose acrylonitrile (AN) content is 25 wt % (SAN 25) in poly(acrylonitrile-co-butadiene-co-styrene) (ABS)/poly(vinyl chloride) (PVC) blend was studied when the AN content of the matrix SAN in ABS was 35 wt % (SAN 35). When some amount of matrix SAN 35 was replaced by SAN 25 in a ABS/PVC (50/50 by weight) blend, the mixed phase of SAN and PVC at the interface was thickened, and about a twofold increase of impact strength was observed. The changes in morphology, dynamic mechanical properties, and rheological properties by the compatibilizing effect of SAN 25 were observed. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 705–709, 1998  相似文献   

3.
The effect of styrene–butadiene–styrene content on morphology, melting, crystallinity, dynamic mechanical properties and relaxation processes of polypropylene/poly(styrene-co-acrylonitrile)/styrene–butadiene–styrene blends was investigated. Styrene–butadiene–styrene reduced the average size of dispersed particles and generated complex aggregates in the matrix. Morphology development examined by dynamic mechanical thermal analysis showed increased damping of poly(styrene-co-acrylonitrile) domains at high styrene–butadiene–styrene contents. All blends showed reduced crystallinity and melting point compared with neat polypropylene. Poorer nucleation effect of dispersed particles at high styrene–butadiene–styrene loadings was observed. Compatibilization accelerated the form relaxation of dispersed particles. Additional relaxation process probably due to styrene–butadiene–styrene chains was observed in blends containing 10% and higher styrene–butadiene–styrene content.  相似文献   

4.
Blends of a poly(styrene-co-acrylonitrile) (SAN) with poly(ethene-co-1-octene) rubber (EOR) were investigated. An improved toughness–stiffness balance was obtained when adding as a compatibilizer a blend consisting of oxazoline-functionalized EOR, prepared by grafting EOR with oxazoline-functional maleinate, and poly(styrene-co-maleic anhydride) (SMA), which is miscible with SAN. Enhanced interfacial adhesion was evidenced by the improved dispersion of the EOR in the SAN matrix and the reduced glass transition temperature of the dispersed EOR phase. Morphology studies using transmission electron microscopy revealed formation of an interphase between the matrix and the rubber particles. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1685–1695, 1999  相似文献   

5.
H.A. Stretz  D.R. Paul 《Polymer》2006,47(24):8123-8136
For polymer/organoclay nanocomposites formed by melt processing, interactions between the polymer, montmorillonite surface, and surfactant determine any thermodynamic driving force for dispersion of the clay in the polymer. Interactions between poly(styrene-co-acrylonitrile) (SAN) and a single organoclay were probed by varying the SAN copolymer composition. Sample preparation was accomplished by melt processing on a microcompounder followed by injection molding. The level of mechanical reinforcement was observed to increase with acrylonitrile content. Digital analyses of TEM photomicrographs of core samples suggest an optimum in the aspect ratio of the particles at ∼38 wt% acrylonitrile; montmorillonite particles are much longer and thicker for the PS-based composites indicting poor exfoliation compared to the SAN-based composites. The melt viscosity of the SAN copolymers used in this work increased with AN content; experiments showed that varying melt viscosity independent of AN content can account for some improvement in reinforcement.  相似文献   

6.
Effects of copolymer composition on morphology and electrooptical properties of polymer/liquid crystal (LC) (40/60 w/w) composite films were studied with styrene-co-acrylonitrile (SAN) of varying acrylonitrile (AN) content (6.3–35 wt %) and a cyanobiphenyl-type liquid crystal (E8). The dimension of the LC domain in the composite film decreased with increase of AN content of SAN up to 30 and increased at 35 wt %. The contact angle of the film with an LC drop showed a similar trend; however, its minimum was obtained at 24% AN. Threshold voltage (Vth) and rise time (τR) increased, and decay time (τD) decreased with AN content up to 30%, and the tendency is reversed at 35%. The results were interpreted in terms of, possibly, a solubility parameter matching between SAN and LC. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Summary Alternating propene-carbon monoxide copolymers (P-CO) were melt-blended with polystyrene, poly(styrene-co-acrylonitrile) (SAN), and with poly(styrene-co-maleic anhydride) (SMA). P-CO forms homogeneously miscible blends with SAN containing 25 wt% AN at the investigated blend compositions. The transparent blends have single, intermediate glass transition temperatures that fit the Fox equation. The elastic properties of P-CO at room temperature disappear upon blending with SAN because the T g is driven above RT. Polystyrene and SMA are not miscible with P-CO and form heterogeneous blends with two glass transitions. This demonstrates that both the polarity of the styrenic copolymer and the nature of the comonomer govern its phase behavior. Received: 14 January 1999/Revised version: 19 April 1999/Accepted: 19 April 1999  相似文献   

8.
The effect of the molecular weight and acrylonitrile (AN) content of the styrene-acylonitrile copolymer (SAN) on the morphology, mechanical, and rheological properties of SAN/chlorinated polyethylene (CPE) blends was studied. The interaction between dispersed particle and matrix is expected to be optimal at the 25% AN content of SAN. Phase inversion from a dispersion to a continuous phase appears to occur above 50 wt % CPE. Mechanical properties increased with molecular weight at a constant AN content of SAN. Morphological, mechanical, and rheological properties were more sensitive to the AN content, rather than the molecular weight of SAN. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 27–36, 1998  相似文献   

9.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The miscibility of polycarbonate (PC) with styrene-co-acrylonitrile random copolymer (SAN) has been systematically investigated as functions of acrylonitrile content and shear flow. Various AN-contents ranged from 11 to 74 wt% and different simple shear flow values up to 90 s−1 have been used to explore the effect of both material and proceeding parameters on the miscibility of PC and SAN blends. The finest phase dispersion of the SAN particles was observed at AN=25 wt% for PC/SAN=70/30 blends under the same processing condition using scanning electron microscope (SEM). The obtained morphologies indicated that PC and SAN could form a partial miscibility blend and the maximum miscibility occurred at AN=25 wt%. This observation was supported by considering the shifts in the glass processes of the two rich phases of the blend using the dynamical mechanical analysis (DMA) measurements. The optimum interaction of the two components at AN=25 wt% calculated from ellipsometric technique was found to be the only responsible parameter for the high miscibility of the blend. The viscoelastic properties of the pure polymer components were found to play a minor role in the obtained morphologies. The effect of simple shear flow on the morphology of PC/SAN-25=70/30 blend has been also investigated using a special shear apparatus of parallel plate geometry. It has been found that the dispersed phase of SAN was elongated and broken-up in the direction of flow with weaker contrast at high shear rates. The shear rate was found to enhance the miscibility of SAN (dispersed phase) in the PC matrix to a great extent as seen in the weak contrast of the two phases observed by transmission electron microscope (TEM).  相似文献   

11.
This paper deals with morphological studies of binary and ternary blends composed of poly(styrene-co-acrylonitrile) (SAN), polyurethane elastomer (TPU) and poly(ethylene-co-vinyl acetate) (EVA). Selective etching was found necessary to expose the morphologies of the blends. Chloroform or hot acetone, hexane/toluene (2/1v/v) and NaOH/CH3OH (1wt%) were found to be selective etching agents for SAN, EVA and TPU, respectively. SAN and TPU form blends with fine dispersion structure, while SAN and EVA lead to rough phase structure with poor phase adhesion. These results are in accordance with the difference in the mechanical properties of SAN/TPU and SAN/EVA. In addition, for SAN/TPU/EVA blends, if TPU is only a minor component, it is preferentially located at the interphase, playing the role of a compatibilizer. As the amount of TPU increases, the compatibility is gradually improved. ©1997 SCI  相似文献   

12.
The enhancement of miscibility at the lower critical solution temperature (LCST) of the blends poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) (PVC/EVA), poly(vinyl chloride)/poly(styrene-co-acrylonitrile) (PVC/SAN) and poly(vinyl chloride)/poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile) (PVC/EVA/SAN) was observed at the micron level. Such miscibility is attributed to the dehydrochlorination and formation of hydrogen bonds between blend components. However, macrolevel immiscibility of these blends heated to the LCST was observed. Such microdomain compatibility of these blends gives a synergistic character. Brittle-type failure observed for LCST samples testifies to the synergism in treated blends. ©1997 SCI  相似文献   

13.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

15.
This article describes how to convert the unreactive surface of poly(tetrafluoroethylene) (PTFE) into poly(styrene-co-acrylonitrile) (SAN). Composite particles with a crosslinked poly(butadiene) (PB) shell covered over a PTFE core were prepared by an emulsifier-free seeded emulsion polymerization of butadiene in the presence of PTFE latex. It was found that the increase in the PB crosslink density resulted in depressing the formation of PB secondary particles. Then, styrene and acrylonitrile were able to graft onto PB shell in high efficiency of 70%. SAN-modified PTFE/PB core-shell particles could eventually be dispersed homogeneously in a SAN matrix. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:185–190, 1998  相似文献   

16.
The phase behavior of a series of binary component polymer blends of poly(ε-caprolactone) (PCL) and poly(t-butylstyrene-co-acrylonitrile) (TBSAN) containing varying contents of acrylonitrile (AN) was examined to determine the influence of copolymer composition and PCL content on blend miscibility or immiscibility. Thermal measurements were extensively used to determine phase behavior, i.e., a single compositionally dependent glass transition temperature implies blend miscibility. Otherwise, immiscibility is assumed to dominant blend behavior. It was determined that TBSAN and PCL form miscible blends over a broad range of AN content, i.e., spanning from below 43.2 mol % (19.8 wt %) to about 66.4 mol % (39.6 wt %), a range considerably different from that found in poly(styrene-co-acrylonitrile) copolymers. TBSAN-containing blends were found to be immiscible when the AN content is less than about 43 mol % or greater than about 67 mol %. Small-angle light-scattering and polarized light microscopy was used to probe the substantial morphological changes in the miscible blends. Little change was observed in the immiscible blends. These results clarify the phase separation observed in these blend systems. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The effect of the molecular weight and acrylonitrile (AN) content of the styrene–acrylonitrile copolymer (SAN) on the morphology, mechanical properties, and rheological properties of acrylonitrile–butadiene–styrene terpolymer/poly(methyl methacrylate) (ABS)/PMMA (60/40 by weight) blends were studied. When the AN content of matrix SAN (32%) was close to that of graft SAN (30%) AN, rubber particles existed separately. However, with matrix SAN having 35% AN, rubber particles showed tendency to agglomerate each other. With increasing molecular weight of matrix SAN, impact strength, ultimate elongation, and abrasion resistance of the blend generally increased. Yield strength increased with molecular weight at a constant AN content of matrix SAN, and it decreased with the decrease of AN content in spite of the increasing molecular weight of SAN. Melt properties, rather than the morphological and mechanical properties, were more sensitive to the AN content, rather than the molecular weight of matrix SAN. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The compatibility of polymer blends of poly(?-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) containing various acrylonitrile (AN) contents was studied to evaluate the influences of copolymer composition and PCL concentration upon blend compatibility. Blend compatibility was characterized by the occurence of a single glass transition intermediate between the transitions of the respective pure components. The glass transitions were determined by differential scanning calorimetry (DSC) and dynamic mechanical measurement (Rheovibron). It was found that SAN and PCL form compatible blends when the AN content of SAN ranges from 8% to 28% by weight. These blends are compatible in all proportions except for SAN 28 (AN wt % = 28) and PCL blends containing 70 or 85 wt % PCL. Blends of PCL and SAN were found to be incompatible when the AN content in SAN is greater than 30 wt % or less than 6 wt %. Lower critical solution temperature (LCST) behavior, which can be attributed to phase separation, was found to occur when these blends were heated to elevated temperatures. The cloud point, or phase separation, was found to vary with AN content in SAN and the concentration of SAN in the blend.  相似文献   

19.
The intrinsic viscosities of blends of poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) (PVC/EVA), poly(vinyl chloride)/poly(styrene-co-acrylonitrile) (PVC/SAN), and poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile) (EVA/SAN) have been studied in cyclohexanone as a function of blend composition. In order to predict the compatibility of polymer pairs in solution, the interaction parameter term, Δb, obtained from the modified Krigbaum and Wall theory, and the difference in the intrinsic viscosities of the polymer mixtures and the weight average intrinsic viscosities of the two polymer solutions taken separately are used. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Traditionally, the morphologies of the dispersed phase in Polycarbonate (PC)/poly(styrene‐co‐acrylonitrile) (SAN) blends were strongly influenced if AN content in SAN changed significantly even under constant processing conditions. This would hinder the pure research intended to study the effect of the refractive index difference between the polymer host and the polymeric dispersed particles on the optical properties tough. Therefore, we respectively prepared different PC/SAN light diffusion sheets with four types of SAN containing different AN content ranging just from 20 to 25 wt %, a narrow range that sufficiently ensures the relatively stable morphology of different SAN in PC matrix. The results suggest that the refractive index of SAN increases with an decreasing AN content, thus narrowing the refractive index difference between PC and SAN and producing PC/SAN(70/30) light diffusion sheets with an increasing transmittance and decreasing haze. The interesting phenomenon is further analyzed using Mie scattering theory. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44156.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号