首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

2.
Simultaneous saccharification and ethanol fermentation (SSF) of sago starch was studied using amyloglucosidase (AMG) and Zymomonas mobilis. The optimal concentration of AMG and operating temperature for the SSF process were found to be 0.5% (v/w) and 35°C, respectively. Under these conditions with 150 g dm?3 sago starch as a substrate, the final ethanol concentration obtained was 69.2 g dm?3 and ethanol yield, YP/S, 0.50 g g?1 (97% of theoretical yield). Sago starch in the concentration range of 100–200 g dm?3 was efficiently converted into ethanol. When compared to a two-step process involving separate saccharification and fermentation stages, the SSF reduced the total process time by half.  相似文献   

3.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

4.
BACKGROUND: Current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. RESULTS: Oil palm empty fruit bunches (OPEFB), a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM). The optimal conditions were found to be 127.64 °C, 22.08 min, and 2.89 mol L?1 for temperature, reaction time, and NaOH concentration, respectively. Regarding enzymatic digestibility, 50 FPU g?1 cellulose of cellulase was selected as the test concentration, resulting in a total glucose conversion rate (TGCR) of 86.37% using the Changhae Ethanol Multi Explosion (CHEMEX) facility. Fermentation of pretreated OPEFB using Saccharomyces cerevisiae resulted in an ethanol concentration of 48.54 g L?1 at 20% (w/v) pretreated biomass loading, along with simultaneous saccharification and fermentation (SSF) processes. Overall, 410.48 g of ethanol were produced from 3 kg of raw OPEFB in a single run, using the CHEMEX_50 L reactor. CONCLUSION: The results presented here constitute a significant contribution to the production of bioethanol from OPEFB. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Woody yard waste with high lignin content (22% of dry matter (DM)) was subjected to wet oxidation pre‐treatment for subsequent enzymatic conversion and fermentation. The effects of temperature (185–200 °C), oxygen pressure (3–12 bar) and addition of sodium carbonate (0–3.3 g per 100 g DM biomass) on enzymatic cellulose and hemicellulose (xylan) convertibility were studied. The enzymatic cellulose conversion was highest after wet oxidation for 15 min at 185 °C with addition of 12 bars of oxygen and 3.3 g Na2CO3 per 100 g waste. At 25 FPU (filter paper unit) cellulase g?1 DM added, 58–67% and 80–83% of the cellulose and hemicellulose contained in the waste were converted into monomeric sugars. The cellulose conversion efficiency during a simultaneous saccharification and fermentation (SSF) assay at 10% DM was 79% for the highest enzyme loading (25 FPU g?1 DM) while 69% conversion efficiency was still reached at 15 FPU g?1 DM. Total carbohydrate recoveries were high (91–100% for cellulose and 72–100% for hemicellulose) and up to 49% of the original lignin and 79% of the hemicellulose could be solubilized during wet oxidation treatment and converted into carboxylic acids mainly (total carboxylic acids = 3.1–7.4% on DM basis). Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Cellulose rich barley straw, which has a glucan content of 62.5%, followed by dilute acid pretreatment, was converted to bioethanol by simultaneous saccharification and fermentation (SSF). The optimum fractionation conditions for barley straw were an acid concentration of 1% (w/v), a reaction temperature of 158 °C and a reaction time of 15 min. The maximum saccharification of glucan in the fractionated barley straw was 70.8% in 72 h at 60 FPU/gglucan, while the maximum digestibility of the untreated straw was only 18.9%. With 6% content WIS (water insoluble solid) for the fractionated barley straw, 70.5 and 83.2% of the saccharification yield were in SHF and SSF (representing with glucose equivalent), respectively, and a final ethanol concentration of 18.46 g/L was obtained under the optimized SSF conditions: 34 °C with 15 FPU/g-glucan enzyme loading and 1 g dry yeast cells/L. The results demonstrate that the SSF process is more effective than SHF for bioethanol production by around 18%.  相似文献   

7.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and β-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L−1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g−1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L−1. __________ Translated from Chemical Engineering (China), 2007, 35(12): 42–45 [译自: 化学工程]  相似文献   

8.
BACKGROUND: In Mediterranean countries, olive tree pruning provides a widely available renewable agricultural residue with, currently, no industrial application. This residue could provide feedstock for the bioethanol industry. In the present study, olive tree pruning biomass pretreated with both ‘liquid hot water’ and ‘dilute‐sulfuric acid’ was tested as a substrate for ethanol production. Three different process configurations, separate hydrolysis and fermentation (SHF), simultaneous saccharification, fermentation and prehydrolysis (PSSF), and simultaneous saccharification and fermentation (SSF), were compared at different water‐insoluble solids concentrations. RESULTS: High ethanol concentration of about 3.7% (v/v) was obtained by separate hydrolysis and fermentation or prehydrolysis and simultaneous saccharification and fermentation of liquid hot water pretreated at 23% (w/w) substrate loading. CONCLUSION: The nature of the pretreated residue allows high substrate concentration (≥17% w/w) to be used in the enzymatic hydrolysis step. Substrate loading of 17% DM has been shown to provide a compromise between hydrolysis efficiency and glucose concentrations for the same enzyme/substrate ratio. Prehydrolysis prior to simultaneous saccharification and fermentation facilitated SSF performance at high substrate loading on liquid hot water pretreated olive pruning residue. This effect was not observed with dilute‐acid pretreated substrate. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Bio-ethanol converted from cheap and abundant lignocellulosic materials is a potential renewable resource to replace depleting fossil fuels. Simultaneous saccharification and fermentation (SSF) of alkaline-pretreated corn stover for the production of ethanol was investigated using a recombinant yeast strain Saccharomyces cerevisiae ZU-10. Low cellobiase activity in Trichoderma reesei cellulase resulted in cellobiose accumulation. Supplementing the simultaneous saccharification and fermentation system with cellobiase greatly reduced feedback inhibition caused by cellobiose to the cellulase reaction, thereby increased the ethanol yield. 12 h of enzymatic prehydrolysis at 50 °C prior to simultaneous saccharification and fermentation was found to have a negative effect on the overall ethanol yield. Glucose and xylose produced from alkaline-pretreated corn stover could be co-fermented to ethanol effectively by S. cerevisiae ZU-10. An ethanol concentration of 27.8 g/L and the corresponding ethanol yield on carbohydrate in substrate of 0.350 g/g were achieved within 72 h at 33 °C with 80 g/L of substrate and enzyme loadings of 20 filter paper activity units (FPU)/g substrate and 10 cellobiase units (CBU)/g substrate. The results are meaningful in co-conversion of cellulose and hemicellulose fraction of lignocellulosic materials to fuel ethanol.  相似文献   

10.
BACKGROUND: The objective of this work is to develop an efficient pretreatment method that can help enzymes break down the complex carbohydrates present in wheat straw to sugars, and to then ferment of all these sugars to ethanol. RESULTS: The yield of sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg g?1 straw, 121 °C, 1 h) and enzymatic hydrolysis (45 °C, pH 5.0, 120 h) using a cocktail of three commercial enzyme preparations (cellulase, β‐glucosidase, and xylanase) at the dose level of 0.15 mL of each enzyme preparation g?1 straw was 568 ± 13 mg g?1 (82% yield). The concentration of ethanol from lime pretreated enzyme saccharified wheat straw (78 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 35 °C in 24 h was 22.5 ± 0.6 g L?1 with a yield of 0.50 g g?1 available sugars (0.29 g g?1 straw). The ethanol concentration was 20.6 ± 0.4 g L?1 with a yield of 0.26 g g?1 straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 35 °C in 72 h. CONCLUSION: The results are important in choosing a suitable pretreatment option for developing bioprocess technologies for conversion of wheat straw to fuel ethanol. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Solid content in the simultaneous saccharification and fermentation (SSF) broth should be as high as possible in order to reach higher ethanol concentration. In this work, several feeding strategies for ethanol production from steam-exploded wheat straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations. Previous fermentability tests as well as SSF processes showed the difficulty of using the slurry for ethanol production under the studied conditions. Notwithstanding, fed-batch SSF processes with water-insoluble solids (WIS) fraction resulted in better configuration, reaching the highest ethanol concentration (36.2 g/L) with an initial WIS content of 10% (w/v) and 4% (w/v) of substrate addition at 12 h, which meant 20% more ethanol when compared with batch SSF.  相似文献   

12.
Coconut coir pith, available in abundance especially in tropical countries, was studied as a substrate for the production of cellulase[1,4(1,3;1,4)-β-D -glucan 4-glucanohydrolase, EC 3.2.1.4] and β-D -glucosidase(β-D -glucoside glucohydrolase, EC 3.2.1.21) in solid state fermentation. The effects of fermentation time, nutrient level, substrate particle size and inoculum size have been examined for optimal production of these enzymes by the fungal strain Aspergillus niger NCIM 1005. The highest filter paper activity (FPA) of 4.11 IU g?1, carboxyl methyl cellulose (CMCase) activity of 15·55 IU g?1 and cellobiase activity of 9·31 IU g?1 were obtained after 7 to 8 days of fermentation. Reese and Mandel's mineral solution in the substrate to mineral solution ratio of 1:10 (w/v) supported high cellulase and cellobiase activities. An inoculum size of 20–50% (v/v) based on the volume of mineral medium and substrate average particle size of 375 μm were optimum for enzyme production.  相似文献   

13.
The effectiveness of soaking in aqueous ammonia (SAA) as a pretreatment method for the conversion of soybean fiber to ethanol via simultaneous saccharification and fermentation (SSF) was investigated. Insoluble fiber is a co-product from oil and protein extraction using two-stage, countercurrent, enzyme-assisted, aqueous extraction processing of full-fat soybean flakes (FFSF) and extruded FFSF. The fiber fractions were soaked in 15 wt% aqueous ammonia at 1:10 solid-to-liquid ratio. The effects of operating variables, including treatment times (6, 12, and 24 h), treatment temperatures (60 and 80 °C), and cellulase loadings (15 and 60 FPU/g-glucan) on the degree of enzymatic hydrolysis were determined. The best SAA conditions were 80 °C for 12 h followed by an enzyme loading of 15 FPU/g-glucan, which produced a 152-mg/g glucose yield after 48 h of hydrolysis. This was 8.7 times the amount produced from the same fiber not pretreated with SAA. The glucose yield increased to 381 mg/g when fiber obtained from extruded FFSF was submitted to SAA. SAA (80 °C, 12 h) on extruded fiber subjected to SSF increased ethanol yield from 0.06 g of ethanol/g [40% of theoretical yield] (for non SAA pretreated fiber) to 0.25 g of ethanol/g [92% of theoretical yield]. The combination of extrusion and SAA was an efficient means for converting the fiber-rich soybean fraction into ethanol.  相似文献   

14.
BACKGROUND: Waste textiles, such as dyed cellulosic and/or polyester blended fabrics have the potential to serve as an alternative feedstock for the production of biological products via microbial fermentation. Dissolution pretreatment was employed to enhance the enzymatic saccharification of dyed and synthetic fiber blended cellulosic fabrics. The fermentable reducing sugars obtained from waste cellulosic fabrics were used to culture Gluconobacter xylinus for value‐added bacterial cellulose (BC) production. RESULTS: Concentrated phosphoric acid was the ultimate cellulose solvent for dissolution pretreatment since 5% w/w cellulosic fabric can be completed dissolved at 50 °C. After regeneration in water, the cellulosic precipitate was subjected to cellulase hydrolysis, resulting in at least 4‐fold enhancement of saccharification rate and reducing sugars yield. The colored saccharification products can be utilized by G. xylinus to produce BC, approximately 1.8 g L?1 BC pellicle was obtained after 7 days static cultivation. CONCLUSION: Dyed and blended waste fabric can be pretreated effectively by dissolution to produce fermentable sugars by cellulase hydrolysis. Dissolution pretreatment can expose the dyed or polyester fiber covered digestible cellulosic fibers to cellulase and leads to a significant enhancement of saccharification yield. The colored saccharification products have no significant inhibiting effect on the fermentation activity of G. xylinus for BC production. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting Aspergillus niger and nonstarch digesting and sugar fermenting Kluyveromyces marxianus in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% (w/V) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus A. niger and nonamylolytic sugar fermenting K. marxianus.  相似文献   

16.
Coffee industry substrates such as coffee pulp, coffee cherry husk, silver skin, spent coffee and mixtures of these coffee wastes (MC) were evaluated for their efficacy as sole carbon source for the synthesis of α‐amylase in solid‐state fermentation (SSF) using a fungal strain of Neurospora crassa CFR 308. For SSF with coffee pulp and with MC, α‐amylase activity of 3908 U g?1 ds (units per gram of dry substrate) and 3870 U g?1 ds, respectively, was observed. Parameters such as moisture (60%), pH (4.6), temperature (28 °C), particle size (1.0 mm), inoculum size (107 spores g?1 ds), and fermentation time (5 days) were optimized for enzyme synthesis, wherein 4981 and 4324 U g?1 U g?1 ds of α‐amylase activity was obtained in SSF with coffee pulp and MC, respectively. The enzyme production was further improved when the substrates were subjected to pre‐treatment by steaming. Accordingly, maximum α‐amylase activity of 7084 U g?1 ds and 6342 U g?1 ds was obtained with steam‐pretreated coffee pulp and MC, respectively, demonstrating them to be excellent sole carbon sources for synthesis of α‐amylase production. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
In this work, the ethanol production from sweet sorghum residue was studied. Sweet sorghum residue was hydrolyzed with phosphoric acid under mild conditions. The liquid hydrolysate was fermented by Pachysolen tannophilus, and the hydrolysis residue was fermented by the simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae with cellulase (60 FPU/g dry materials). Orthogonal experiments were carried out to investigate the effects of main reaction condition factors, such as temperature, acid concentration, time and dry-matter content, on the reducing sugar yield. The results show that the optimal reaction conditions should be 120°C, 80 g/L, 80 min and 10%, respectively. Under these conditions, 0.3024 g reducing sugar/g dry material was obtained. The liquid hydrolysate was then fermented by P.tannophilus with the highest ethanol concentration of 14.5 g/L. At a water-insoluble solid concentration of 5%, 5.4 g/L ethanol was obtained after 12 h of SSF. The total ethanol yield was 0.147 g/g dry material, which would be beneficial for the application of ethanol production from sweet sorghum residue. __________ Translated from Journal of Beijing University of Chemical Technology, 2007, 34(6): 637-639, 652 [译自: 北京化工大学学报]  相似文献   

18.
BACKGROUND: Bioethanol produced from renewable biomass, such as sugar, starch or lignocellulosic materials, is one of the alternative energy resources that is environmentally friendly. Triticale crops have a high yield as well as a high starch content and amylolytic enzyme activity and are therefore considered to be ideal for bioethanol production. RESULTS: This study examined the feasibility of ultrasound pretreatment to enhance the release of fermentable sugars from triticale meal during pretreatment and consequently increase bioethanol yield in the simultaneous saccharification and fermentation (SSF) process by Saccharomyces cerevisiae yeast. Ultrasonic pretreatment effectively increased the glucose and maltose content after liquefaction by 15.71% and 52.57%, respectively, compared with the untreated control sample under determined optimal conditions of sonication (5 min, 60 °C). The ultrasound pretreatment consequently improved bioethanol production during SSF processing since the bioethanol content was increased by 10.89%. CONCLUSION: Taking into consideration significant process parameters obtained in the SSF process of triticale meal with ultrasound pretreatment at 60 °C, the process time may be reduced from 72 to 48 h. At that point of the SSF, maximum bioethanol content of 9.55% (w/v), bioethanol yield of 0.43 g g?1 of triticale starch, and percentage of the theoretical bioethanol yield of 84.56% were achieved. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
BACKGROUND: The organosolv pretreatment followed by enzymatic hydrolysis of the pretreated material and subsequent fermentation of the hydrolysate produced, was the strategy used for ethanol production from sugarcane bagasse. The effect of different operational variables affecting the pretreatment (the catalyst type and its concentration, and the pretreatment time) and enzymatic hydrolysis stage (substrate concentration, cellulase loading, addition of xylanase and Tween 20, and the cellulase/β‐glucosidase ratio), were investigated. RESULTS: The best values of glucose concentration (28.8 g L?1) and yield (25.1 g per 100 g dry matter) were obtained when the material was pretreated with 1.25% (w/w) H2SO4 for 60 min, and subsequently hydrolyzed using 10% (w/v) substrate concentration in a reaction medium supplemented with xylanase (300 UI g?1) and Tween 20 (2.5% w/w). Fermentation of the broth obtained under these optimum conditions by Saccharomyces cerevisiae resulted in an ethanol yield of 92.8% based on the theoretical yield, after 24 h. CONCLUSION: Organosolv pretreatment of sugarcane bagasse under soft conditions, and subsequent enzymatic hydrolysis of the pretreated material with a cellulolytic system supplemented with xylanase and Tween 20, is a suitable procedure to obtain a glucose rich hydrolysate efficiently fermentable to ethanol by Sacharomyces cerevisiae yeasts. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
蒸汽爆破麦草同步糖化发酵转化乙醇的研究   总被引:4,自引:0,他引:4  
罗鹏  刘忠  杨传民  王高升 《化学工程》2007,35(12):42-45
近年来对木质生物资源同步糖化发酵转化乙醇的研究较多,但是,麦草同步糖化发酵转化乙醇的最佳工艺条件还未确定。文中采用正交试验设计的方法,对在混合酶(纤维素酶Celluclast 1.5 1,β-葡萄糖苷酶Novozym 188)与酿酒酵母菌作用下,稀硫酸催化的蒸汽爆破麦草原料同步糖化发酵转化乙醇的工艺条件进行研究,详细讨论了反应温度、底物质量浓度、发酵液pH值、纤维素酶浓度对乙醇质量浓度和得率的影响。结果表明,工艺条件对乙醇质量浓度和得率的影响程度由高到低依次为:底物质量浓度、纤维素酶浓度、发酵液pH值、反应温度。最佳工艺条件为反应温度35℃,底物质量浓度100 g/L,发酵液pH值5.0,纤维素酶浓度30 FPU/g。在此条件下,随着反应时间的延长,乙醇质量浓度持续上升。反应72 h后,乙醇质量浓度和得率分别达到22.7 g/L和65.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号