首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of polycarbonate (PC), the polymerization of diglycidyl ether of bisphenol A (DGEBA) and bisphenol A in the melt was initiated to prepare blends of poly(hydroxyether of bisphenol A) (phenoxy) and PC. The polymerization reaction started from the initially homogeneous ternary mixture consisting of DGEBA, bisphenol A, and PC; phenoxy/PC blends with PC content up to 20 wt % were obtained. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to characterize the miscibility of the as-polymerized blends. All the blends displayed separate glass transition temperatures (Tg's), that is, the blends were phase-separated. The formation of a two-phase structure is considered to result from phase separation induced by polymerization. This result is consistent with the immiscibility established through solution- and melt-blending approaches. The insolubility of the as-polymerized blends showed that crosslinking between the components occurred. Both Fourier-transform infrared (FTIR) and solid 13C-nuclear magnetic resonance (13C-NMR) spectroscopic studies demonstrated a transreaction between the components and in situ polymerization of DGEBA and bisphenol A in the presence of PC, which yielded a phase-separated, transreacted material. The results of this work provide a contrast to those of the transreacted phenoxy/PC blends based on conventional blending methods; however, the transreaction in the present case occurred at a much lower temperature (180oC), at which polymerization blending was carried out. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1181–1190, 1999  相似文献   

2.
The structure, thermal and mechanical properties of blends of poly(butylene terephthalate) (PBT) and a poly(amino–ether) (PAE) barrier resin obtained by direct injection molding are reported. The slight shift of the glass transition temperatures (Tg) of the pure components when blended is attributed to partial miscibility rather than interchange reactions. Both the small strain and the break properties of the blends were close or even above those predicted by the direct rule of mixtures. The specific volume of the blends appeared to be the main reason for the modulus behavior. The linear values of the elongation at break indicated that the blends were compatible, and were attributed to a combination of good adhesion between the two phases of the blends and the small size of the dispersed phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 132–139, 2004  相似文献   

3.
Melt blends of polycarbonate and poly(ethylene terephthalate) were prepared and examined for their transitional behavior by thermal analysis and dynamic mechanical testing. A single Tg was observed for compositions containing more than 60%–70% PET by weight while compositions below this range showed two glass transitions. From this it is concluded that PC and PET are completely miscible in the amorphous phase for PET-rich compositions, whereas PC-rich blends separate into two amorphous phases which apparently contain both components. Melting point and crystallization behavior are conssistent with these conclusions and suggest that very little if any interchange reactions occur between the ester and carbonate groups during melt mixing.  相似文献   

4.
The effect of two different bisphenol‐A‐based diepoxides—nearly pure DGEBA340 and a DGEBA381 oligomer—and an aromatic diamine curative (MCDEA) on the solubility and processability of poly(phenylene oxide) (PPO) was studied. The solubility parameters of the diepoxies and the curative calculated from Fedors's method suggest miscibility of PPO with the components, and this was observed at the processing temperature; however, some of the blends were not transparent at room temperature, indicating phase immiscibility and/or partial PPO crystallization. The steady shear and dynamic viscosities of the systems agreed well with the Cox–Merz relationship and the logarithmic viscosities decreased approximately linearly with increasing amounts of DGEBA381, DGEBA340 or MCDEA, thus causing a processability enhancement of the PPO. The dynamic rheology of intermediate PPO:DGEBA compositions at 200 °C showed gel‐like behaviour. Dynamic mechanical analysis of blends with varying PPO:DGEBA ratios showed that the main glass transition temperature (Tg) of the blends decreased continuously with increasing epoxy content, with a slightly higher plasticizing efficiency being exhibited by DGEBA340 compared to DGEBA381. However, blends with 50 and 60 wt% PPO had almost identical Tg due to the phase separation of the former blends. The blends of MCDEA and PPO were miscible over the concentration range investigated and Tg of the blends decreased with increasing MCDEA concentration. © 2013 Society of Chemical Industry  相似文献   

5.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

6.
In situ reinforced binary and ternary polymer/polymer composites are obtained by the melt blending of poly(ethylene terephthalate) (PET), polyamide-6 (PA-6), and polyamide-66 (PA-66) in an extruder in the presence of a catalyst, followed by drawing of the extrudate and annealing of the drawn blends. The blends were studied by DSC, X-ray, SEM, and mechanical testing. After drawing, all the components were found to be oriented, forming microfibrils with diameters of about 1–2 μm. The chemical nature of the homopolymers affects the blends' morphologies; while the PA-66/PA-6 blend is homogeneous, phase separation is established in the case of PET/PA-6. The decrease in the enthalpy of melting of the blend components as well as the depression of their peaks of crystallization from the melt, compared to pure homopolymers, are indications that block copolymers have been formed via interchange reactions during the blending process. On the one hand, these copolymers improve the compatibility of the homopolymers, and on the other hand, they alter the chemical composition of the blends. After thermal treatment at 245°C, i.e., above the Tm of PA-6, the latter undergoes some disorientation, while PET and PA-66 retain their microfibrillar shape, and in this way, a compositelike structure is created. The presence of chemical bonds between the separate phases via copolymers favors the cocrystallization of PA-66 and PA-6 as well as the cooperative crystallization of PET, PA-6, and PA-66, both modes fostering improved compatibility (adhesion) of the blend components. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 723–737, 1998  相似文献   

7.
In an attempt to minimize the acetaldehyde formation at the processing temperatures (280–300°C) and the outer–inner transesterification reactions in the poly (ethylene terephthalate) (PET)–poly(ethylene naphthalate) (PEN) melt‐mixed blends, the hydroxyl chain ends of PET were capped using benzoyl chloride. The thermal characterization of the melt‐mixed PET–PEN blends at 300°C, as well as that of the corresponding homopolymers, was performed. Degradations were carried out under dynamic heating and isothermal conditions in both flowing nitrogen and static air atmosphere. The initial decomposition temperatures (Ti) were determined to draw useful information about the overall thermal stability of the studied compounds. Also, the glass transition temperature (Tg) was determined by finding data, indicating that the end‐capped copolymers showed a higher degradation stability compared to the unmodified PET and, when blended with PEN, seemed to be efficient in slowing the kinetic of transesterification leading to, for a finite time, the formation of block copolymers, as determined by 1H‐NMR analysis. This is strong and direct evidence that the end‐capping of the ? OH chain ends influences the mechanism and the kinetic of transesterification. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
In this paper a new method based on the determination of heat capacity increment at the glass transition (ΔCp) is presented to quantify the effectiveness of compatibilizers for immiscible polymer blends. In order to show the validity of the method, two immiscible blends, polypropylene–poly(ethylene terephthalate) (PP–PET) and PP–polyamide‐6,6 (PP–PA66), and two compatibilizers, N, N‐dihydroxyethyl monomaleic amide–grafted PP (g–PP) alone and together with a phenolic resin (PR), were investigated. Scanning electron microscopy (SEM) observations prove that the two compatibilizer systems are both effective for compatibilizing the blends, and the combined use of g–PP and PR is more effective than g–PP alone. Modulated‐temperature differential‐scanning calorimetry (M‐TDSC) determinations reveal that the ΔCp varies with the extent of compatibilization. For the uncompatibilized blends, the ΔCp for the PET component in PP–PET or for the PA66 component in PP–PA66 was found to be almost unchanged. After compatibilization these quantities become smaller. Also, the combined use of g–PP and PR results in the smallest ΔCp values for both blends. This ΔCp change with different compatibilizers is in very good agreement with the corresponding morphological variation observed by SEM. Thus, ΔCp can be taken as a new parameter for quantifying the extent of compatibilization, since it is a direct measure of interfacial content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2868–2876, 1999  相似文献   

9.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

10.
The molecular dynamics and miscibility of highly interacting binary polymer blends of poly(methyl methacrylate) (PMMA) and poly[styrene‐co‐(maleic anhydride)] random copolymer with 8 wt% maleic anhydride content (SMA) were investigated as a function of composition over a wide range of frequency (10?2–106 Hz) at different constant temperatures (30–160 °C). Only one common glass relaxation process (α‐process) was detected for all measured blends, and its dynamics and broadness were found to be composition dependent. The existence of only one common α‐relaxation process located at a temperature range between those of the pure polymer components indicated the miscibility of the two polymer components over the entire range of composition. The miscibility was also confirmed by measuring the glass transition temperatures of the blends, Tg, using differential scanning calorimetry. The composition dependence of Tg of the blends showed a positive deviation from the linear mixing rule and well described by the Gordon–Taylor–Kwei equation. The relaxation spectrum of the blends was resolved into α‐ and β‐relaxation processes using the Havriliake–Negami (HN) equation and ionic conductivity. The dielectric relaxation parameters obtained from HN analysis, such as broadness of relaxation processes, maximum frequency, fmax, and dielectric strength, Δ? (for the α‐ and β‐relaxation processes), were found to be blend composition dependent. The kinetics of the α‐relaxation process of the blends were well described by the Meander model, while an Arrhenius‐type equation was used to evaluate the molecular dynamics of the β‐relaxation process. Blending of PMMA and SMA was found to have a considerable effect on the kinetics and broadness of the β‐relaxation process of PMMA, indicating that the strong interaction and miscibility between the two polymer components could effectively change the local environment of each component in the blend. © 2013 Society of Chemical Industry  相似文献   

11.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

12.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

13.
Blends of polycarbonate (PC) and poly(alkylene terephthalate) (PAT) such as poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) were investigated. It was learned that processes of phase separation in blends consisting of PC and PAT can cause variations in properties of both the amorphous and crystalline phases. In PC/PBT blends the DSC technique did not detect crystalline portion of PBT with its concentrations up to 20 wt %. For PBT = 40 wt %, it forms a continuous phase, and blend's crystallinity is close to the additive values. The glass transition temperature (Tg) shifts to the lower temperature region. The relaxation spectrometry revealed strong adhesion between phases in the blends over the temperature range from the completion of β‐transition to TgPAT. This interaction becomes weaker between TgPAT and TgPC. Temperature‐dependent variations in the molecular mobility and interphases interactions in the blends affect their impact strength. Over the temperature range where interphases interactions occur and the two components are in the glassy state, the blend is not impact resistant. Over the temperature range between TgPAT and TgPC the blends become impact‐resistant materials. This is because energy of crack propagation in the PAT amorphous phase—being in a high‐elastic state—dissipates. It is postulated that the effect of improving the impact strength of PC/PAT blends, which was found for temperatures between the glass transition temperatures of the mixed components, is also valid for other binary blends. © 2002 Wiley Perioodicals, Inc. J Appl Polym Sci 84: 1277–1285, 2002; DOI 10.1002/app.10472  相似文献   

14.
Mixtures of diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin with poly(4‐vinyl phenol) (PVPh) of various compositions were examined with a differential scanning calorimeter (DSC), using the curing agent 4,4′‐diaminodiphenylsulfone (DDS). The phase morphology of the cured epoxy blends and their curing mechanisms depended on the reactive additive, PVPh. Cured epoxy/PVPh blends exhibited network homogeneity based on a single glass transition temperature (Tg) over the whole composition range. Additionally, the morphology of these cured PVPh/epoxy blends exhibited a homogeneous network when observed by optical microscopy. Furthermore, the DDS‐cure of the epoxy blends with PVPh exhibited an autocatalytic mechanism. This was similar to the neat epoxy system, but the reaction rate of the epoxy/polymer blends exceeded that of neat epoxy. These results are mainly attributable to the chemical reactions between the epoxy and PVPh, and the regular reactions between DDS and epoxy. Polym. Eng. Sci. 45:1–10, 2005. © 2004 Society of Plastics Engineers.  相似文献   

15.
The intended objective of this work was to bring together two immiscible polymers, polyarylate (PAr) and Phenoxy [poly(hydroxy ether of bisphenol-A)], preparing ternary mixtures with a third component, poly(butylene terephthalate) (PBT). Experimental results showed that ternary mixtures containing 30% or more PBT gave single glass transition temperatures by DSC. Moreover, the PBT melting point depended on the composition of the mixtures. These results, which could be indicative of the existence of a single amorphous phase in these blends, have been discussed. Nevertheless, results must be considered with caution, given the peculiarities of the Tg–composition diagrams for the miscible pairs PAr/PBT and Phenoxy/PBT. Hypothetic interchange reactions during melting have been found to be unimportant.  相似文献   

16.
Stoichiometric mixtures of DGEBA (diglycidyl ether of bisphenol A)/DDS (diaminodiphenyl sulfone) and DGEBA/mPDA (meta phenylene diamine) have been isothermally cured by electromagnetic radiation and conventional heating using thin film sample configurations. Fourier transform infrared spectroscopy (FTIR) was used to measure the extent of cure. Thermal mechanical analysis (TMA) was used to determine the glass transition temperatures directly from the cured thin film samples. Well-defined glass transitions were observed in the TMA thermograph for both thermal and microwave cured samples. Significant increases in the reaction rates have been observed in the microwave cured DGEBA/DDS samples. Only slight increases in the reaction rates have been observed in the microwave cured DGEBA/mPDA samples. Higher glass transition temperatures were obtained in microwave cured samples compared to those of thermally cured ones after gelation. The magnitude of increases of glass transition temperature is much larger for the DGEBA/DDS system than DGEBA/mPDA system. The microwave radiation effect was much more significant in DGEBA/DDS system than in DGEBA/mPDA system. DiBenedetto's model was used to fit the experimental Tg data of both thermal and microwave cured epoxy resins.  相似文献   

17.
The phase behavior of blends containing Poly(N‐1‐alkyl itaconamic acids) (PNAIA) with Poly(2‐vinylpyrindine) (P2VPy) and Poly(4‐vinylphenol) (P4VPh) were analyzed by Diferential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). Miscibility over the whole range of compositions is observed in both systems. All the blends show thermograms exhibiting distinct single glass transition temperatures (Tg), which are intermediate to those of the pure components. The Calorimetric Analysis using Gordon Taylor, Couchman, and Kwei treatments allows conclusion that interactions between the components is favorable to the miscibility. FTIR analysis of the blends suggests that the driving force for miscibility is hydrogen bonding formation. The variation of the absorptions of the carbonyl groups of PNAIA and the hydroxyl groups of P4VPh allows one to attribute the miscibility to weak acid base like interactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1245–1250, 2002; DOI 10.1002/app.10453  相似文献   

18.
A silane coupling agent (SCA) was used as a compatibilizer for polypropylene–poly(ethylene teraphthalate) (PP–PET) blends with 20, 40, 50, and 60% PET compositions by weight. PP–PET mixtures were blended with and without an SCA by a single‐screw extruder. The effect of silane modification on the tensile and impact properties of the blends was investigated. The morphology and thermal behavior of the blends were examined with scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The presence of the SCA used in this work extensively improved the mechanical properties of the blends. Mechanical properties were found to be highly dependent on the numbers of extrusions. SEM studies showed that substantially different morphology with better adhesion existed when SCA‐treated blends were compared to nontreated PP–PET blends. The presence of individual melting temperatures of the polymers in all compositions with no significant Tm depression indicated that PET and PP were crystallized separately. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1039–1048, 2003  相似文献   

19.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

20.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号