首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) were prepared by coating PVA/SA (95/5 in wt %) mixture solutions on microporous polysulfone (PSF) supports. For the formation of a defect free thin active layer on a support, the PSF support was multi‐coated with a dilute PVA/SA blend solution. The PVA/SA active layer formed was crosslinked at room temperature by using an acetone solution containing glutaraldehyde as a crosslinking agent. The prepared composite membranes were characterized with a scanning electron microscopy (SEM), a Fourier transform infrared spectroscopy (FTIR), an electrokinetic analyzer (EKA) and permeation tests: The thicknesses of the active layers were about 0.25 μm and 0.01 μm depending on the preparation conditions. The crosslinking reaction of the active layers were completed in less than three minutes via the formation of acetal linkage. The surface of the PVA/SA composite membrane was found to be anionic. The permeation properties of the composite membrane were as follows: 1.3 m3/m2 day of flux and > 95% of rejection at 200 psi for 1000 ppm PEG600 solution. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 347–354, 2000  相似文献   

2.
Carboxymethyl chitosan (CMCS)/polysulfone (PS) hollow‐fiber composite membranes were prepared through glutaraldehyde (GA) as the crosslinking agent and PS hollow‐fiber ultrafiltration membrane as the support. The permeation and separation characteristics for dehydration of isopropanol were investigated by the pervaporation method. Pure chitosan, carboxymethyl chitosan, and crosslinked carboxymethyl chitosan membranes were characterized by Fourier transform infrared (FT‐IR) spectroscopy and X‐ray diffraction (XRD) to study the crosslinking reaction mechanism and degree of crystallinity, respectively. The effects of feed composition, crosslinking agent, membrane thickness, and feed temperature on membrane performance were investigated. The results show that the crosslinked CMCS/PS hollow‐fiber composite membranes possess high selectivity and promising permeability. The permeation flux and separation factor for isopropanol/water is 38.6 g/m2h and 3238.5, using 87.5 wt % isopropanol concentration at 45°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1959–1965, 2007  相似文献   

3.
Chemically and physically crosslinked chitosan membranes were prepared by treating chitosan (Ch) with glutaraldehyde (GA) and sulfuric acid (SA). FTIR and XRD results were employed to confirm the formation of covalent and ionic crosslinks between Ch, GA, and SA. The states of water in non‐crosslinked and covalently and ionically crosslinked chitosan membranes containing different amount of water were investigated by low temperature differential scanning calorimetry measurements. The equilibrium swelling in water was examined gravimetrically. Two types of water were found in the polymer samples, i.e., freezing water and non‐freezing water. The effect of crosslinking process on water state and water uptake was analyzed. The water uptake decreased after chitosan crosslinking with GA, but significantly increased after later crosslinking with SA. The amount of non‐freezing water was generally smaller in crosslinked membranes. An impact of molecular and supermolecular structure on water uptake and state of water in non‐crosslinked and crosslinked chitosan membranes was discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1707–1715, 2013  相似文献   

4.
Membranes made of poly(vinyl alcohol) (PVA) and its ionic blends with sodium alginate (SA) and chitosan were synthesized and characterized for their ion-exchange capacity (IEC) and swelling index values to investigate their applicability in direct methanol fuel cells (DMFCs). These membranes were assessed for their intermolecular interactions, thermal stabilities, and mechanical strengths with Fourier transform infrared spectroscopy, X-ray diffraction methods, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. Methanol permeability and proton conductivity were also estimated and compared to that of Nafion 117. In addition to being effective methanol barriers, the membranes had a considerably high IEC and thermal and mechanical stabilities. The addition of small amounts of anionic polymer was particularly instrumental in the significant reduction of methanol permeability from 8.1 × 10−8 cm2/s for PVA to 6.9 × 10−8 cm2/s for the PVA–SA blend, which rendered the blend more suitable for a DMFC. Low methanol permeability, excellent physicomechanical properties, and above all, cost effectiveness could make the use of these blends in DMFCs quite attractive. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1154–1163, 2005  相似文献   

5.
The permeation of riboflavin and insulin through poly(vinyl alcohol) (PVA) and chitosan blend membrane was conducted. The permeability coefficients of both solutes through the crosslinked PVA and chitosan blend membrane were in the order of 10?6?10?7 cm3 cm/cm2s and showed a pH dependence. The pH-dependent permeation behavior was discussed in terms of water content and water structure inside of the swollen membrane. Riboflavin and insulin were presumed to permeate through the free water region in the swollen blend membrane. The DSC thermograms of these membranes indicated that the content of free water and the amount of freezing bound water increased with the water content in the membrane. The greater permeation rate of solutes in acidic solution rather than in neutral solution was due to an increase in both water content and the amount of free water and freezing bound water.  相似文献   

6.
Chemically stable nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) (hereafter, these membranes are called PVA/SA composite membranes) were prepared by coating microporous polysulfone (PSF) supports with dilute PVA/SA blend solutions. The PSF supports were pretreated with small monomeric compounds to reduce their pore size and to improve their hydrophilicity before coating with the PVA/SA blend solutions. The concentration of the PVA/SA blend solutions ranged from 0.1 to 0.3 wt %. The membranes prepared in this study were characterized with various methods such as SEM, FTIR, permeation tests, and z‐potential measurements. Especially, chemical stabilities of the membranes were tested, using three aqueous solutions with different pHs such as a HCl solution (pH 1), a K2CO3 solution (pH 12.5), and a NaOH solution (pH 13). Their chemical stabilities were compared with that of a polyamide (PA) composite membrane prepared from piperazine (PIP) and trimesoyl chloride (TMC). In this study, it was found that the PVA/SA composite membranes prepared showed not only good chemical stabilities but also good permeation performances in the range from pH 1 to 13. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2471–2479, 2001  相似文献   

7.
Water‐swollen hydrogel (WSH) membranes for gas separation were prepared by the dip‐coating of asymmetric porous polyetherimide (PEI) membrane supports with poly(vinyl alcohol) (PVA)–glutaraldehyde (GA), followed by the crosslinking of the active layer by a solution method. Crosslinked PVA/GA film of different blend compositions (PVA/GA = 1/0.04, 0.06, 0.08, 0.10, 0.12 mol %) were characterized by differential scanning calorimetry (DSC) and their water‐swelling ratio. The swelling behavior of PVA/GA films of different blend compositions was dependent on the crosslinking density and chemical functional groups created by the reaction between PVA and GA, such as the acetal group, ether linkage, and unreacted pendent aldehydes in PVA. The permeation performances of the membranes swollen by the water vapor contained in a feed gas were investigated. The behavior of gas permeation through a WSH membrane was parallel to the swelling behavior of the PVA/GA film in water. The permeation rate of carbon dioxide through the WSH membranes was 105 (cm3 cm?2 s?1 cmHg) and a CO2/N2 separation factor was about 80 at room temperature. The effect of the additive (potassium bicarbonate, KHCO3) and catalyst (sodium arsenite, NaASO2) on the permeation of gases through these WSH membranes was also studied. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1785–1791, 2001  相似文献   

8.
《分离科学与技术》2012,47(8):1335-1349
Abstract

Pervaporative separation of acetone/water and isopropanol (IPA)/water systems has been studied in the water-lean range of composition of the feed mixtures. Poly(vinyl alcohol) (PVA) membranes crosslinked with citric acid, adipic acid, maleic acid, glutaraldehyde, and glyoxal were used for this purpose. The sorption characteristics of all the membranes indicate that these membranes have a good sorption selectivity for water in view of the hydrophilic nature of PVA. The type of crosslinker used for crosslinking has been shown to have an important bearing on the permeation characteristics of the membranes. Thus, the trifunctional citric acid yields the highest selectivity but lowest flux. A comparison of the productive capacities of the various membranes indicates that the glutaraldehyde crosslinked membrane has the maximum productive capacity for IPA dehydration whereas maleic acid crosslinked membrane yields the highest productive capacity for acetone dehydration.  相似文献   

9.
Blended membranes of hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(vinyl amine) (PVAm) were prepared and crosslinked with glutaraldehyde. The prepared membranes were characterized using infrared (attenuated total reflection mode) spectroscopy, differential scanning calorimetry, X‐ray diffractometry, and scanning electron microscopy measurements. Pervaporation performances of the membranes were evaluated for the separation of water‐isopropanol (IPA) mixtures. As the PVAm content increased from PVAm0 to PVAm1.5, the flux through a 70 μm film increased from 0.023 to 0.10 kg/mh at an IPA/water feed ratio of 85/15 at 30 °C. The driving force for permeation of water increased due to the temperature but it has no effect on IPA permeation. Activation energies for the permeation of IPA and water were calculated to be 17.11 and 12.46 kJ/mol, respectively. Controlling the thickness of the blend membrane could improve the permeation flux with only a marginal reduction in the separation factor. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45572.  相似文献   

10.
By blending a rigid polymer, sodium alginate (SA), and a flexible polymer, poly(vinyl alcohol) (PVA), SA/PVA blend membranes were prepared for the pervaporation separation of ethanol–water mixtures. The rigid SA membrane showed a serious decline in flux and a increase in separation factor due to the relaxation of polymeric chains, whereas the flexible PVA membrane kept consistent membrane performance during pervaporation. Compared with the nascent SA membrane, all of the blend membranes prepared could have an enhanced membrane mobility by which the relaxation during pervaporation operation could be reduced. From the pervaporation separation of the ethanol–water mixtures along with the temperature range of 50–80°C, the effects of operating temperature and PVA content in membrane were investigated on membrane performance, as well as the extent of the relaxation. The morphology of the blend membrane was observed with PVA content by a scanning electron microscopy. The relaxational phenomena during pervaporation were also elucidated through an analysis on experimental data of membrane performance measured by repeating the operation in the given temperature range. SA/PVA blend membrane with 10 wt % of PVA content was crosslinked with glutaraldehyde to enhance membrane stability in water, and the result of pervaporation separation of an ethanol–water mixture through the membrane was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:949–959, 1998  相似文献   

11.
Chitosan and polyethylene glycol (PEG-600) membranes were synthesized and crosslinked with 3-aminopropyltriethoxysilane (APTES). The main purpose of this research work is to synthesize RO membranes which can be used to provide desalinated water for drinking, industrial and agricultural purposes. Hydrogen bonding between chitosan and PEG was confirmed by displacement of the hydroxyl absorption peak at 3237 cm−1 in pure chitosan to lower values in crosslinked membranes by using FTIR. Dynamic mechanical analysis revealed that PEG lowers Tg of the modified membranes vs. pure chitosan from 128.5 °C in control to 120 °C in CS-PEG5. SEM results highlighted porous and anisotropic structure of crosslinked membranes. As the amount of PEG was increased, hydrophilicity of membranes was increased and water absorption increased up to a maximum of 67.34%. Permeation data showed that flux and salt rejection value of the modified membranes was increased up to a maximum of 80% and 40.4%, respectively. Modified films have antibacterial properties against Escherichia coli as compared to control membranes.  相似文献   

12.
Poly(vinyl alcohol) (PVA) blended with poly(ethylene glycol) (PEG) was crosslinked with tetraethoxysilane (TEOS) to prepare organic–inorganic PVA/PEG/TEOS hybrid membranes. The membranes were then used for the dehydration of ethanol by pervaporation (PV). The physicochemical structure of the hybrid membranes was studied with Fourier transform infrared spectra (FT‐IR), wide‐angle X‐ray diffraction WXRD, and scanning electron microscopy (SEM). PVA and PEG were crosslinked with TEOS, and the crosslinking density increased with increases in the TEOS content, annealing temperature, and time. The water permselectivity of the hybrid membranes increased with increasing annealing temperature or time; however, the permeation fluxes decreased at the same time. SEM pictures showed that phase separation took place in the hybrid membranes when the TEOS content was greater than 15 wt %. The water permselectivity increased with the addition of TEOS and reached the maximum at 10 wt % TEOS. The water permselectivity decreased, whereas the permeation flux increased, with an increase in the feed water content or feed temperature. The hybrid membrane that was annealed at 130°C for 12 h exhibited high permselectivity with a separation factor of 300 and a permeation flux of 0.046 kg m?2 h?1 in PV of 15 wt % water in ethanol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Blend membranes of a natural polymer, chitosan, with a synthetic polymer, poly(vinyl alcohol) (PVA), were prepared by solution casting and crosslinked with a urea formaldehyde/sulfuric acid (UFS) mixture. Chitosan was used as the base component in the blend system, whereas PVA concentration was varied from 20 to 60 wt %. Blend compatibility was studied by differential scanning calorimetry, and Fourier transform infrared spectroscopy was used to study membrane crosslinking. Membranes were tested for pervaporation dehydration of isopropanol and tetrahydrofuran (THF) at 30°C in close proximity to their azeotropic compositions. Membrane performance was assessed by calculating flux and selectivity. Swelling experiments performed in water + organic mixtures at 30°C were used to explain the pervaporation results. The blend membrane containing 20 wt % PVA when tested for 5 and 10 wt % water–containing THF and isopropanol feeds exhibited selectivity of 4203 and 17,991, respectively. Flux increased with increasing concentration of water in the feed. Selectivity was highest for the 20 wt % PVA‐containing blend membrane. The results of this study are unique in the sense that the crosslinking agent used—the UFS mixture—was novel. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1918–1926, 2007  相似文献   

14.
Summary Chitosan membranes of three types: i) dried in ammonia atmosphere (CSA); ii) double layer crosslinked with glutaraldehyde (CSG); and iii) prepared from aqueous-ethanolic solution and dried in the presence of ammonia vapor (CSE) were developed by casting chitosan solutions onto a glossy paper used as a support in the process of filtration under high pressures. All the membranes were characterized by infrared spectroscopy, scanning electron microscopy and by permeation experiments. Addition of ethanol to the chitosan solution decreased the time of membrane preparation and of the filtration process. The performance (solute rejection) of these membranes was found to be efficient with organic compounds such as methylene blue, truncated hemoglobin and bovine serum albumin (BSA) with molecular weights of 319.8 Da 17.7 kDa and 66.4 kDa respectively, since it retained practically 100% of the sample.  相似文献   

15.
In this work, the properties of novel ionic polymer blends of crosslinked and sulfonated poly(vinyl alcohol) (PVA) and sulfonated poly(ether ether ketone) (SPEEK) are investigated. Crosslinking and sulfonation of PVA were carried out using sulfosuccinic acid (SSA) in the presence of dispersed SPEEK to obtain semi‐interpenetrating network blends. PVA–SSA/SPEEK blend membranes of different compositions were studied for their ion‐exchange capacity, proton conductivity, water uptake, and thermal and mechanical properties. The hydrated blend membranes show good proton conductivities in the range of 10?3 to 10?2 S/cm. When compared with pure component membranes, the PVA–SSA/SPEEK blend membranes also exhibit improvement in tensile strength, tensile modulus, and delay in the onset of thermal and chemical degradation. Semi‐interpenetrating nature of the blends is established from morphology and dynamic mechanical analysis. Morphology of the membranes was studied using scanning electron microscopy after selective chemical treatment. The dynamic mechanical properties of the membranes are examined to understand the miscibility characteristics of the blends. The relative proportions of PVA and SPEEK and the degree of crosslinking of PVA–SSA are important factors in determining the optimum properties for the blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
《分离科学与技术》2012,47(14):1915-1923
Abstract

The separation of water/ethanol vapor mixtures through chitosan membranes and crosslinked chitosan membranes was studied by means of the vapor permeation technique. The permeation performance was discussed in terms of separation factor and permeation flux. Crosslinking the chitosan membrane by glutaraldehyde enhanced the selectivity. The highest separation factor obtained was 6000 for a crosslinked chitosan membrane with a degree of deacetylation of 100%.  相似文献   

17.
Dense blend membranes were prepared by blending hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(ethyleneimine) (PEI), which were then crosslinked by glutaraldehyde (GA) in a mixture of solvents under the catalysis of hydrochloric acid (HCl) for the dehydration of tetrahydrofuran (THF) by pervaporation. The effect of experimental parameters such as feed water concentration, permeate pressure, and membrane thicknesses on permeate parameters, i.e., flux and selectivity were determined with feed water concentration less than 40 wt %. The membranes were found to have good potential for breaking the azeotrope of 94 wt % THF with a flux of 1.072 and 0.376 kg/m2 h for plane PVA/PEI and crosslinked PVA/PEI blend membrane, which exhibited high selectivity of 156 and 579 respectively. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas flux decreased correspondingly. High permeate pressure causes a reduction in both flux and selectivity. These effects were clearly elucidated with the aid of the known relationship among plasticization effect, degree of swelling, permeate pressure, and feed water concentration. These blend membranes were also subjected to sorption studies to evaluate the extent of interaction and degree of swelling in pure as well as binary feed mixtures. Further ion exchange capacity studies were carried out for all the crosslinked and uncrosslinked membranes to determine the total number of interacting groups present in the membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1152–1161, 2006  相似文献   

18.
Our study is concerned with the development of a novel type of layer-by-layer (LbL) self-assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance-dissipation (QCM-D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers  相似文献   

19.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Tetraethylorthosilicate crosslinked poly(vinyl alcohol) membrane was modified by varying the amounts of chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The effects of chitosan content and feed composition on the pervaporation performance of the membranes were analyzed. The modified membranes exhibit simultaneous increase of both flux and selectivity. The membrane containing 15 mass % of chitosan shows the highest separation selectivity of 2991, with a flux of 2.39 × 10?2 kg/(m2 h) at 30°C for 10 mass % of water in the feed. The total flux and flux of water are almost overlapping each other, manifesting that the membranes could be used effectively to break the azeotropic point of water–isopropanol mixture, so as to remove water from the isopropanol. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water permeation (Epw) are significantly lower than those of isopropanol permeation (EpIPA), suggesting that the membranes developed here have higher separation ability for water–isopropanol system. In addition, difference was negligibly small between the activation energy values of total permeation (Ep) and water permeation (Epw), indicating that coupled transport is minimal because of a higher selective nature of membranes. The Ep and ED values ranged between 40.92 and 52.60, and 39.58 and 52.47 kJ/mol, respectively. The positive heat of sorption (ΔHs) values observed in all the membranes suggests that Henry's mode of sorption is predominant. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1380–1389, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号