首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After an extensive fungal screening, an Ophiostoma piceae strain was selected for its ability to produce high concentrations of lipase and esterase to remove pitch components of wood pulp. Optimal conditions for growth and enzyme production were established first in shaken flasks. A medium containing rapeseed oil and mycological peptone resulted in a lipase activity of 736 U dm?3 and an esterase activity of 1569 U dm?3. When fermentation runs were implemented using the same medium under controlled conditions in 2‐dm3 fermenters, the lipase and esterase activities were increased to 1005 and 4006 U dm?3 respectively. Further scale‐up was carried out in two stages to 20 dm3 and 72 dm3 (pilot‐scale) stirred tank reactors. The results proved that the cultures could be scaled‐up successfully from shaken flasks to pilot‐scale with increases of 47% and 146% in lipase and esterase activities respectively. © 2001 Society of Chemical Industry  相似文献   

2.
Aspergillus flavus produces a lipase (EC 3.1.1.3) which is partly bound to the mycelium during growth. The production of the mycelium-bound lipase is concomitant with growth, and declines when growth ceases. Maximum productivity of the enzyme is obtained when the culture is incubated at 30°C, an initial culture pH of 6·5 and with 2% (w/v) each of corn oil and yeast extract as carbon and organic nitrogen source. Yeast extract affects not only the production of lipase but also the secretion of proteases into the culture medium. Production of the latter enzymes, which inactivate the free lipase, is enhanced by adding yeast extract (1–2%, w/v) to the culture medium. However, at 5% (w/v) yeast extract concentration, proteolytic activity is not detected and consequently, the activity of free lipase may easily be measured. Free lipase activity can easily be detected when 0·001 mol dm−3 EDTA is added to the culture medium. The presence of the chelating agent enhances the production and maintains the stability of the extracted mycelium-bound lipase.  相似文献   

3.
Lipase and esterase production by Ophiostoma piceae and Fusarium oxysporum were enhanced and extended by developing a fed‐batch process in stirred tank reactors. Fed‐batch strategy improved lipolytic enzyme production from Ophiostoma piceae in both 2 and 20 dm3 stirred tank reactors. However, fed‐batch fermentation of Fusarium oxysporum in the 2 dm3 reactor was more effective than both batch and fed‐batch fermentations in the 20 dm3 reactor. When a medium composed of only carbon and nitrogen source was intermittently fed to the cultures, the maximum specific lipase activity was improved by more than 80% and 35% in Ophiostoma piceae and Fusarium oxysporum cultures respectively. The maximum specific esterase activity was improved by 20% and 15% in Ophiostoma piceae and Fusarium oxysporum cultures respectively. The duration of production for both fungi extended from 144 to 216 h compared with a batch culture under the same condition. © 2000 Society of Chemical Industry  相似文献   

4.
Two novel amperometric biosensors for the determination of L -malic acid in food samples have been compared. Both sensors make use of a Clark-type O2-electrode but differ in the enzymes used. The first sensor is composed of malate dehydrogenase (decarboxylating), also known as ‘malic enzyme’ (MDH(dec.), EC 1.1.1.40) and pyruvate oxidase (POP, EC 1.2.3.3). It covers a linear detection range from 1 μmol dm−3 to 0·9 mmol dm−3 L -malate, with a response time of 1·5 min (t90) and a relative standard deviation of 3·5%. Measurements with real samples offered a good correlation with the standard enzymatic assay (difference ±7%). Stored at room temperature, the response of the sensor is constant for 8 days. The second biosensor is based on the three enzyme sequence malate dehydrogenase (MDH, EC 1.1.1.37), oxaloacetate decarboxylase (OAC, EC 4.1.1.3) and pyruvate oxidase (POP, EC 1.2.3.3). It has a non-linear calibration curve. Concentrations from 5 μmol dm−3 to 1 mmol dm−3 L -malate can be detected, within a response time of 1·5 min and with a relative standard deviation of 20%. The lower detection limit for L -malate is 2 μmol dm−3. The response is constant for 10 days when the sensor is stored at room temperature.  相似文献   

5.
This study reports the statistical optimisation through response surface methodology of the growth medium for Panus tigrinus manganese‐dependent peroxidase (MnP) production in shaken culture. Three crucial variables, including carbon source, malonic acid and Mn2+, were optimised in a nitrogen‐limited medium. Sucrose was the best carbon source for MnP production. Mn2+ ions and malonic acid significantly stimulated MnP production at an optimal concentration of 53 mg dm?3 and 8.2 mmol dm?3, respectively, resulting in 0.83 U cm?3. Further experiments were performed in lab‐scale stirred tank (STR) and bubble‐column (BCR) reactors using the previously optimised liquid medium. BCR proved to be more adequate than STR in supporting MnP production, leading to 3700 U dm?3 after 144 h with a productivity of 25.7 U dm?3 h?1. On a comparative basis with other production data in lab‐scale reactors, these results appear to be compatible with scale transfer. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
The production of ligninolytic enzymes by Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) in laboratory‐scale bioreactors was studied. The cultivations were carried out in semi‐solid‐state conditions, employing corncob as carrier, which functioned both as a place of attachment and as a source of nutrients. Several bioreactor configurations were investigated in order to determine the most suitable one for ligninolytic enzyme production: a 1‐dm3‐static‐bed bioreactor, a 1‐dm3‐static‐bed bioreactor with air diffusers into the bed, a 0.5‐dm3‐static‐bed bioreactor with air diffusers into the bed and a tray bioreactor. Although the static‐bed configurations produced maximum individual lignin peroxidase (LiP) activities about 400 U dm−3 (1.0‐dm3 bioreactor) and about 700 U dm−3 (0.5‐dm3 bioreactor), manganese‐dependent peroxidase (MnP) was not detected throughout the cultures. Nevertheless, the tray configuration led to maximum individual MnP and LiP activities of about 200 U dm−3 and 300 U dm−3, respectively. Therefore, this configuration is the most adequate of the different bioreactor configurations tested in the present work, since the ligninolytic complex formed by MnP and LiP is more efficient for its application to bio‐processing systems. In addition, the results indicated the influence of the oxygen in ligninolytic enzyme production. © 2001 Society of Chemical Industry  相似文献   

7.
Pseudomonas aeruginosa AT10 produced a mixture of surface‐active rhamnolipids when cultivated on mineral medium with waste free fatty acids as carbon source. The development of the production process to an industrial scale included the design of the culture medium. A 24 full factorial, central composite rotational design and response surface modelling method (RSM) was used to enhance rhamnolipid production by Pseudomonas aeruginosa AT10. The components that are critical for the process medium were the carbon source, the nitrogen source (NaNO3), the phosphate content (K2 HPO4/KH2PO4 2:1) and the iron content (FeSO4·7H2O). Two responses were measured, biomass and rhamnolipid production. The maximum biomass obtained was 12.06 g dm?3 DCW, when the medium contained 50 g dm?3 carbon source, 9 g dm?3 NaNO3, 7 g dm?3 phosphate and 13.7 mg dm?3 FeSO4·7H2O. The maximum concentration of rhamnolipid, 18.7 g dm?3, was attained in medium that contained 50 g dm?3 carbon source, 4.6 g dm?3 NaNO3, 1 g dm?3 phosphate and 7.4 mg dm?3 FeSO4·7H2O. © 2002 Society of Chemical Industry  相似文献   

8.
Gold adsorption from cyanide solution by bacterial (Bacillus subtilis), fungal (Penicillium chrysogenum) and seaweed (Sargassum fluitans) biomass was examined. At pH 2.0, these biomass types were capable of sequestering up to 8.0 µmol g−1, 7.2 µmol g−1 and 3.2 µmol g−1, respectively. An adverse effect of increasing solution ionic strength (NaNO3) on gold biosorption was observed. Gold‐loaded biomass could be eluted with 0.1 mol dm−3 NaOH with efficiencies higher than 90% at pH 5.0 at the Solid‐to‐Liquid ratio, S/L, = 4 (g dm−3). Cyanide mass balances for the adsorption, desorption as well as for the AVR process indicated the stability of the gold‐cyanide which did not dissociate either upon acidification or upon binding by biomass functional groups. Gold biosorption mainly involved anionic AuCN2 species bound by ionizable biomass functional groups carrying a positive charge when protonated. FTIR analyses indicated that the main biomass functional groups involved in gold biosorption are most probably nitrogen‐containing weak base groups. The present results confirmed that waste microbial biomaterials have some potential for removing and concentrating gold from solutions where it occurs as a gold‐cyanide complex. © 1999 Society of Chemical Industry  相似文献   

9.
The thermostability and thermal decomposition kinetics of methyl cellulose (MC), ethyl cellulose (EC), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and hydroxypropyl–methyl cellulose (HPMC) were characterized in nitrogen and air by thermogravimetry (TG). Various methods of kinetic analysis were compared in case of thermal degradation of the five cellulose ethers. The initial decomposition temperature (Td), temperature at the maximum decomposition rate (Tdm), activation energy (E), decomposition reaction order (n), and pre-exponential factor (Z) of the five cellulose ethers were evaluated from common TG curves and high-resolution TG curves obtained experimentally. The decomposition reactions in nitrogen were found to be of first order for MC, EC, and HPMC with the average E and ln Z values of 135 kJ/mol and 25 min−1, although there were slight differences depending on the analytical methods used. The thermostability of cellulose ethers in air is substantially lower than in nitrogen, and the decomposition mechanism is more complex. The respective average E, n, ln Z values for HEC in nitrogen/air were found to be 105/50 kJ/mol, 2.7/0.5, and 22/8.3 min−1, from constant heating rate TG method. The respective average E, n, and ln Z values for three cellulose ethers (EC/MC/HPMC) in air are 123/144/147 kJ/mol, 2.0/1.8/2.2, 24/28/28 min−1 by using high-resolution TG technique. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2927–2936, 1999  相似文献   

10.
Process variables were optimized for the production of lactic acid from pretreated beet molasses by Lactobacillus delbrueckii IFO 3202 for batch and continuous fermentations. In the batch fermentation, maximum yields (95·4% conversion, 77·1% effective) and maximum lactic acid volumetric productivity (4·83 g dm−3 h−1) was achieved at 45°C, pH 6·0, 78·2 g dm−3 sugar concentration with 10 g dm−3 yeast extract. Various cheaper nitrogen sources were replaced with yeast extract on equal nitrogen bases in batch fermentation. Of all the nitrogen sources tested, yeast extract yielded the highest and malt sprouts yielded the second highest level of lactic acid. In the continuous fermentation, maximum lactic acid (4·15%) was obtained at a dilution rate of 0·1 h−1. Maximum volumetric lactic acid productivity (11·20 g dm−3 h−1) occurred at D = 0·5 h−1 dilution rate. © 1997 SCI.  相似文献   

11.
Zeolite NaY at 5 g dm−3 concentration, was selected to improve the production of ethanol fermentation by Saccharomyces bayanus from high glucose concentration media. The highest ethanol productivity (3·07 g dm−3 h−1) was obtained from a 220 g dm−3 initial glucose concentration, while the highest ethanol concentration (130 g dm−3) was obtained from a 350 g dm−3 glucose medium. The zeolite is believed to have acted as a pH regulator, maintaining the pH value around 3·7–3·8. Under these conditions cellular viability was preserved and metabolic activity was maintained. Thus all the glucose was consumed, and high ethanol productivity and concentration were obtained. Therefore, the addition of zeolite improved ethanol production from high concentrations of glucose by Saccharomyces bayanus. © 1998 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Rhamnolipid is a biosurfactant that finds wide applications in pharmaceuticals and beauty products. Pseudomonas aeruginosa is a producer of rhamnolipids, and the process can be implemented under laboratory‐scale conditions. Rhamnolipid concentration depends on medium composition namely, carbon source concentration, nitrogen source concentration, phosphate content and iron content. In this work, existing data7 were used to develop an artificial neural network‐based response surface model (ANN RSM) for rhamnolipid production by pseudomonas aeruginosa AT10. This ANN RSM model is integrated with non‐dominated sorting differential evolution (DE) to identify the optimum medium composition for this process. RESULTS: Different strategies for optimization of culture medium composition for this process were evaluated, and the best determined to be an ANN model combined with DE involving a combination of Naïve and Slow and ε‐constrained techniques. The optimal culture medium is determined to have carbon source concentration of 49.86 g dm?3, nitrogen source concentration of 4.99 g dm?3, phosphate content of 1.42 g dm?3, and iron content of 17.12 g dm?3. The maximum rhamnolipid activity was found to be 18.07 g dm?3, which compares favorably with that previously reported (18.66 g dm?3), and is in fact closer to the experimentally determined value of 16.50 g dm?3. CONCLUSION: This method has distinct advantages over methods using statistical regression models, and can be used for optimization of other multi‐objective biosurfactant production processes. © 2012 Society of Chemical Industry  相似文献   

13.
An expression system based on Escherichia coli and the T5 promoter allowed the overproduction of a his‐tagged rhamnulose‐1‐phosphate aldolase (RhuA; EC 4.1.2.19), an enzyme with applications in the production of deoxyazasugars and deoxysugars compounds. Shake flask and bioreactor cultivation with E coli M15 (pQErham) were performed under different media and inducing conditions for RhuA expression. A Defined Medium (DM) with glucose as carbon source gave a high volumetric and enzyme productivity (3460 AU dm?3 and 288 AU dm?3 h?1 respectively) compared with Luria–Bertoni (LB) medium (2292 AU dm? 3 and 255 AU dm?3 h?1). The minimum quantity of (isopropyl‐β‐D ‐thiogalactoside) IPTG for optimal induction was estimated in 18–20 µmol IPTG gDCW?1. The highest volumetric production of RhuA (8333 AU dm?3) was obtained when IPTG was added in the late log‐phase. No significant differences were found in specific RhuA activity for induction temperatures of 30 and 37 °C. An effective two‐step purification process comprising affinity chromatography and gel permeation has been developed (overall recovery 66.5%). These studies provide the basis for the further development of an integrated process for recombinant RhuA production suitable for biotransformation applications. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
This paper describes results of the application of simple metabolic model principles to aerobic growth of Kluyveromyces fragilis during the utilisation of a semi‐synthetic medium simulating dairy waste (whey). The theoretical yield coefficients (maximum, true and real) of biomass on lactose and oxygen, available electrons and ATP were determined and compared with experimental data. The experimental runs were performed in a B Brown fermenter (15 dm3 of operating capacity). The yeast K fragilis was cultured in semi‐synthetic medium containing lactose (40 g dm−3) as a main carbon and energy source and ammonia salts as a main nitrogen source (C/N = 8.74). The yeast growth is closely related to the concentration of oxygen in the media. The experimental yields of biomass on lactose and oxygen reached 94% and 88% of real maximum theoretical values, respectively. Calculated true biomass yield coefficients were closely correlated with the values resulting from the balance analysis of stoichiometric equations. The specific maintenance requirement (mATP) was 14.7 mmole ATP(g DM h)‐1. Determination of the elemental composition of the biomass during the course of fermentation resulted in observations of the cellular C/N ratio changes. The conversion of lactose carbon to biomass and CO2 was 74.3%–81.2%. The recovery of ATP reached 79%, and the recovery of oxygen 96.2%. © 2000 Society of Chemical Industry  相似文献   

15.
In this study microbial production of rennin from a commercial strain of Mucor miehei (NRRL 3420) has been accomplished in a continuously fed fermenter. The effects of feed D ‐glucose concentration (2.5–30 g dm−3) on milk clotting activity and on other system variables were investigated at optimum mixing and dilution rates of 400 rpm and 0.0052 h−1, respectively, without pH control. Maximum milk clotting activity (1.24 IU cm−3) occurred when the feed D ‐glucose concentration was 7.5 g dm−3. Enzyme production continued for 500 h, producing a total milk clotting activity of 10 230 IU. At the maximum milk clotting activity point, total protein concentration, milk clotting and proteolytic activities were analysed and compared with those of a commercial rennet. The ratio of milk clotting activity to proteolytic activity, and specific milk clotting activity were determined as 1.55 × 10−3 IU PU−1 and 5.28 IU mg−1 medium protein, respectively, denoting similar characteristics to a commercial rennet after concentration of the fermentation medium. © 1999 Society of Chemical Industry  相似文献   

16.
Optimization of the fermentation media for maximization of surfactin production was carried out. The carbon source (glucose), the nitrogen source (ammonium nitrate) and the mineral salts ferrous and manganous sulphates were the critical components of the medium optimized. A 24 full factorial central composite experimental design followed by multi-stage Monte-Carlo optimization was used in the design of experiments and in the analysis of results. This procedure limited the number of actual experiments performed while allowing for possible interactions between the four components. The optimum values for the tested variables for the maximal production of surfactin were (in g dm−3): glucose = 36·5; NH4NO3 = 4·5; FeSO4 = 4×10−3 and MnSO4 = 27·5 ×10−2. Relative surfactant concentrations were expressed as the reciprocal of the critical micelle concentration (CMC−1) and the maximum predicted yield of surfactin in terms of CMC−1 was 45·5. © 1997 SCI.  相似文献   

17.
Lipase‐catalysed synthesis of ethanol esters using natural substrates is presented. Initial substrate concentrations, optimised through an experimental design, were 0.8 mol dm−3 lauric acid and 0.58 mol dm−3 ethanol, with an initial esterification rate (r0) of 17.13 mmol dm−3 min−1. Two different water removal systems were compared: a cooling exchanger in the reactor headspace and a vacuum‐based system. The best results were obtained with the second system. After six consecutive operations with the same enzyme, no loss of activity was observed. The yields obtained in all the runs were greater than 90%. Using the same approach three different natural esters (ethyl laureate, ethyl myristate and ethyl palmitate) were synthesised at 0.9 dm3 scale. Similar results were obtained in all three cases, with chemical yields always being greater than 90%. © 2000 Society of Chemical Industry  相似文献   

18.
A simple cyclic fed batch culture system was developed for selection and subsequent isolation of glucose-tolerant Aspergillus niger strain. A culture medium which contained 1.2 g dm−3 of glucose was inoculated with a non-glucose-tolerant A. niger (Ki =20.25 g dm−3). A culture medium of higher glucose concentration (100 g dm−3 and 200 g dm−3) was fed at a rate equal to the rate of HN4+ consumption by means of a pH control system. The maximum and minimum liquid levels in the fed batch culture vessel were determined by two liquid level detectors which activated and deactivated a harvest pump. The novelty of the selection system is that the frequency and pressure of selection increase gradually but continuously, and they are determined by the intrinsic potential of the culture. The process was fully automatic. An Aspergillus mutant which had a glucose inhibition constant of 3200 g dm−3 was isolated after six generations. The process should be particularly useful for screening filamentous microorganisms growing on novel substrates or tolerating inhibitors.  相似文献   

19.
Studies on the biosurfactants produced by Pseudomonas aeruginosa CFTR-6 revealed that they consisted of glycolipids R-1 and R-2. A time course study of fermentation indicated that the appearance of glycolipids in the fermentation broth coincided with the exhaustion of nitrogen and the commencement of the stationary phase with respect to biomass. The effect of variation of the media components such as carbon, nitrogen, phosphate and metal ions has been investigated. The following values were found to be optimum for biosurfactant production: glucose, 20 g dm?3; carbon to nitrogen ratio, 38; phosphate, 30 mmol dm?3; MgSO4.7H2O, 100 mg dm?3. Addition of iron to the medium significantly diminished the glycolipid yield.  相似文献   

20.
The partially purified chlorophyllase, obtained from the alga Phaeodactylum tricornutum, was assayed for its hydrolytic activity towards the pheophytin in ternary micellar systems of hexane/Tris–HCl/surfactant. A wide range of surfactants, sorbitans (Span 20, 40, 60, 80 and 85) and polysorbates (Tween 20, 40, 60, 80 and 85), was used. The use of either 50 μmol dm−3 of Span 85 or 1 μmol dm−3 of Tween 80 increased the hydrolytic activity of chlorophyllase by 110 and 23%, respectively. The optimum values of pH, enzyme content, incubation time and temperature for the hydrolytic activity of chlorophyllase were determined as 8·25, 8·00 μg protein cm−3, 60 min and 27·5°C, respectively. The Vmax and Km values were 6·91 nmole hydrolyzed pheophytin mg−1 protein min−1 and 47·2 nmole pheophytin dm−3, respectively, in the Span 85 medium and 10·04 and 121·00, respectively, in the Tween 80 medium. The addition of optimized amounts of individual membrane lipids, L -α-phosphatidylcholine, L -α-phosphatidyl-DL -glycerol and β-carotene increased the hydrolytic activity of chlorophyllase by 50, 36 and 10%, respectively, for Span 85 and 30, 48 and 15%, respectively, for Tween 80. Phytol showed a competitive inhibitory effect on chlorophyllase activity in both Span and Tween systems with a Ki value of 15·5 and 14·3 μmol dm−3, respectively. High-performance liquid chromatography and spectrophotometry analyses were used to characterize the end-products of chlorophyllase hydrolytic reaction. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号