首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of derivatives of poly(vinyl alcohol) (PVA) was prepared through hydrophobic cationic modification. The structure and composition of PVA grafted with glycidyl‐N‐alkyl‐N,N‐dimethyl‐ammonium chloride (DA) (PVA‐ graft ‐DA) was confirmed with Fourier transform infrared spectral analysis and 1H NMR spectral analysis. The stress‐strain curves of PVA‐ graft ‐DA samples all exhibited an elastic deformation stress plateau, and strain hardening behavior can be observed, indicating the transition of PVA from brittle fracture to ductile fracture. Compared with virgin PVA, the relaxation peak (Tg) of PVA‐ graft ‐DA shifted to a lower temperature. With increasing alkyl chain length and grafting ratio of DA, Tg decreased, and PVA‐ graft ‐DA exhibited a gradually decreasing storage modulus over the whole temperature range of testing due to the relatively weak intermolecular hydrogen bonding and increasing flexibility of molecular chains by introduction of long alkyl chains. PVA crystallites were not affected by grafting with DA, while the crystallization temperature and crystallinity of PVA were improved and the grain size decreased. On grafting with DA, the fracture surface of PVA changed from a smooth surface to regularly distanced striations, displaying much obvious character of tough fracture, indicating that appropriate intermolecular association of the hydrophobic groups facilitated the formation of physical entanglement of molecular chains to strengthen and toughen the PVA matrix. PVA‐ graft ‐DA showed a significant decreasing surface tension with polymer concentration, while the surface tension of PVA‐ graft ‐DA12 dropped most dramatically and declined with increasing grafting ratio of DA12, indicating improvement of the surface activity of PVA by introduction of hydrophobic alkyl chains and hydrophilic cationic groups. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
Various blending ratios of chitosan/poly (vinyl alcohol) (CS/PVA) blend films were prepared by solution blend method in this study. The thermal properties and chemical structure characterization of the CS/PVA blend films were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR). Based upon the observation on the DSC thermal analysis, the melting point of PVA is decreased when the amount of CS in the blend film is increased. The FTIR absorption characteristic is changed when the amount of CS in the blend film is varied. Results of X‐ray diffraction (XRD) analysis indicate that the intensity of diffraction peak at 19° of PVA becomes lower and broader with increasing the amount of CS in the CS/PVA blend film. This trend illustrates that the existence of CS decreases the crystallinity of PVA. Although both PVA and CS are hydrophilic biodegradable polymers, the results of water contact angle measurement are still shown as high as 68° and 83° for PVA and for CS films, respectively. A minimum water contact angle (56°) was observed when the blend film contains 50 wt % CS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
To enhance the oxygen‐barrier and water‐resistance properties of poly(vinyl alcohol) (PVA) and expand its food packaging applicability, five crosslinked poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blend films were prepared via esterification reactions between hydroxyl groups in PVA and carboxylic acid groups in PAA. The physical characteristics of the blends, including the thermal, barrier, mechanical and optical properties, were investigated as a function of PAA ratio. With increasing PAA content, the crosslinking density was significantly increased, resulting in changes in the chemical structure, morphology and crystallinity of the films. The oxygen transmission rate of pure PVA decreased from 5.91 to 1.59 cc m?1 day?1 with increasing PAA ratio. The water resistance, too, increased remarkably. All the blend films showed good optical transparency. The physical properties of the blend films were strongly correlated with the chemical structure and morphology changes, which varied with the PAA content. © 2016 Society of Chemical Industry  相似文献   

4.
In this study a solution‐blend method is adopted to prepare conductive poly(vinyl alcohol)/polyaniline doped by dodecyl benzene sulfonic acid (PVA/PANDB) blend films. Emeraldine base (EB)‐type polyaniline (PANI) is dissolved in N‐methyl‐2‐pyrrolidinone (NMP) and then blended with PVA/dodecyl benzene sulfonic acid (DBSA) solution by various amounts. It is found that the electrical conductivity and the thermal degradation onset temperature of the PVA/PANDB blend film are increased as the amount of EB‐type PANI solution is increased. Fourier transform infrared (FTIR) spectra show that the intensity of the characteristic peak of the functional groups in the blend film is significantly changed as the amount of EB‐type PANI is changed. From optical microscopy examination, it indicates that the amount and size of green particles are increased with increasing the amount of EB‐type PANI solution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3415–3422, 2007  相似文献   

5.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

6.
Porous poly(L ‐lactide) (PLLA) films were prepared by water extraction of poly(ethylene oxide) (PEO) from solution‐cast PLLA and PEO blend films. The dependence of blend ratio and molecular weight of PEO on the porosity and pore size of films was investigated by gravimetry and scanning electron microscopy. The film porosity and extracted weight ratio were in good agreement with the expected for porous films prepared using PEO of low molecular weight (Mw = 1 × 103), but shifted to lower values than expected when high molecular weight PEO (Mw = 1 × 105) was utilized. The maximum pore size was larger for porous films prepared from PEO having higher molecular weight, when compared at the same blending ratio of PLLA and PEO before water extraction. Differential scanning calorimetry of as‐cast PLLA and PEO blend films revealed that PLLA and PEO were phase‐separated at least after solvent evaporation. On the other hand, comparison of blend films before and after extraction suggested that a small amount of PEO was trapped in the amorphous region between PLLA crystallites even after water extraction and hindered PLLA crystallization during solvent evaporation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 629–637, 2000  相似文献   

7.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Blend films were prepared from hydrophobic poly(L -lactide) (PLLA) and hydrophilic poly(vinyl alcohol) (PVA) with different PLLA contents [XPLLA (w/w) = PLLA/(PVA + PLLA)] by solution casting and melt quenching. Their morphology, swelling behavior, and surface and bulk properties were investigated. Polarizing optical microscopy, scanning electron microscopy, differential scanning calorimetry, X-ray diffractometry, and tensile testing revealed that PLLA and PVA were phase separated in these blend films and the PLLA-rich and PVA-rich phases both formed a continuous domain in the blend film of XPLLA = 0.5. The water absorption of the blend films was higher for the blend films of low XPLLA values when compared at the same immersion time, and it was larger than expected from those of nonblended PLLA and PVA films. The dynamic contact angles of the blend films were linearly increased with an increase in XPLLA. The tensile strength and Young's modulus of the dry blend films decreased with a rise in XPLLA, but this dependence was reversed because of the large decreases in tensile strength and Young's modulus for the blend films having high XPLLA values after immersion in water. The elongation at break was higher for the wet blend film than for the dry blend film when compared at the same XPLLA and that of the dry and wet blend films decreased with an increase in XPLLA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2151–2160, 2001  相似文献   

9.
Summary Graft copolymerization of methyl methacrylate onto mercapto-chitin has been examined. The copolymerization reaction proceeded efficiently in dimethyl sulfoxide at 80°C to give chitin-graft-poly(methyl methacrylate)s. The grafting percentage increased with the amount of the monomer and reached above 1200% under appropriate conditions. The resulting graft copolymers exhibited remarkable affinity for various common organic solvents.  相似文献   

10.
Electrospinning is a facile method for preparing nanocomposite materials in fiber form. Nanomaterials that have been incorporated within such fibers are usually inorganic in nature. Recently, nanocomposite nanofibers based on poly(vinyl alcohol) (PVA) as the matrix and nanocrystals of α‐chitin (i.e. chitin whiskers; ca 31 nm in width and ca 549 nm in length on average) as the nanofiller have been successfully prepared. In the study reported here, the fibers were further investigated using X‐ray diffraction (XRD) and dynamic mechanical analyses in comparison with the corresponding solvent‐cast films. The average diameters of the PVA/chitin whiskers fibers ranged between 175 and 218 nm. Careful analysis of the wide‐angle XRD patterns of the fiber mats and the films showed that PVA was partially crystalline, and the incorporation of the whiskers within the fibers was confirmed by peaks characteristic to α‐chitin crystals. Dynamic mechanical analysis showed that the fiber mats were weaker than the films and that the relaxation temperatures associated with the glass transition (Tg) of the fiber mats were greater than those of the films. The addition and increasing the amount of the whiskers caused the crystallinity of PVA within the nanocomposite materials to decrease and Tg to increase. The present study shows that the geometry of nanocomposite materials plays a major role in determining their properties. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Hydrolysis of blend films prepared from amorphous poly(DL-lactide) (a-PLA) and isotactic crystalline poly(D- or L-lactide) (c-PLA) having different c-PLA contents [X = c-PLA/(a-PLA + c-PLA)] was performed in phosphate buffered solution of pH 7.4 at 37°C. The blend films before and after hydrolysis were studied using gel permeation chromatography, tensile testing, differential scanning calorimetry (DSC), and optical rotation. The mass of the blend films remaining after hydrolysis of longer than 20 months was larger with the increasing initial X. The tensile strength of the blend films remained unchanged in the early stage of hydrolysis, followed by a rapid decrease with time, the duration of period for the tensile strength remaining unchanged was longer for the blend films of smaller X. The change in crystallinity, molecular weight, and specific optical rotation during hydrolysis of the blend films revealed that degradation took place preferentially in the amorphous region than in the crystalline region of the blend films. A double melting peak was observed in the DSC spectra of blend films with X = 0.75 and 0.5 after hydrolysis for 20 months. The time difference in the induction of reduction between the tensile strength and the mass due to hydrolysis of the blend films increased with an increase in X. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 855–863, 1997  相似文献   

12.
A novel macromolecular surface modifier, a polypropylene‐graft‐poly(butyl methylacrylate) copolymer, was synthesized through the coupling of polypropylene containing maleic anhydride with monohydroxyl‐terminated poly(butyl methylacrylate). The effects of the raw ratio, reaction temperature, and molecular weight of the branches on the graft reaction were studied. The graft copolymers were characterized with IR, 1H‐NMR, thermogravimetry, and differential scanning calorimetry. The results of attenuated total reflection/Fourier transform infrared and contact‐angle measurements indicated that polypropylene‐graft‐poly(butyl methylacrylate) could diffuse preferably onto the surface and be used as a surface modifier for polypropylene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3413–3419, 2006  相似文献   

13.
Films iodinated at solution before casting (IBC films) were prepared by casting aqueous solutions of 10 wt % poly(vinyl alcohol) (PVA) containing selected quantities of I2/KI. The quantity of I2/KI was controlled to obtain 15.2, 39.8, 83.2, 117.0, and 140.1%. The Thermogravimetry (TG) curves of the IBC film exhibited three distinct zones corresponding to the evaporation of H2O and I2 molecules (zone I), evaporation of I2 and partial decomposition of side groups (? OH) (zone II), degradation of the remaining side groups and partial degradation of the main chain (zone III‐1), and degradation of the remaining main chain and the char zone corresponding to KI. The crystalline structure of the film with a weight gain of 15.2% was almost the same as that of the pure PVA, and the film with the weight gain of 140% was almost amorphous. The differential scanning calorimetry (DSC) thermograms of the IBC films with a weight gain of 15.2% and 39.8% indicated endothermic single or double peaks at around 180°C, corresponding to the crystal melting and degradation of side groups; those with weight gains of 83.2% and above indicated exothermic peaks at around 170°C, corresponding to crystallization, and broad endothermic peak at around 180–200°C, corresponding to the crystal melting and degradation of side groups. The dynamic mechanical αa transition of the IBC film with the weight gain of 140.1% appeared at around 20°C. X‐ray diffraction and DSC analysis of deiodinated films show that the crystal structure, on deiodination of all the IBC films, regardless of crystallinity, returned to that of the pure PVA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3497–3502, 2006  相似文献   

14.
聚乙烯醇薄膜的共混改性   总被引:1,自引:0,他引:1  
从聚合物结构方面分析了聚乙烯醇(PVA)薄膜的水溶性,提出用共混改性方法提高PVA薄膜的溶解性能。研究了聚丙烯酸不同中和度,不同共混组分组成对薄膜水溶性和力学性能的影响,并利用差示扫描量热法(DSC)、傅立叶红外光谱(FTIR)、广角X射线衍射(WXRD)等手段对共混改性机理进行了分析。  相似文献   

15.
Blend films of a commercial poly(vinyl alcohol) (a-PVA) derived from vinyl acetate and silk fibroin (SF) obtained from degummed silk were prepared by mixing the aqueous solutions of both samples. A plain weave structure was recognized only in the blend films, whereas no structure was found for the superimposed films of both samples. The phase separation structure of the blend films was examined by microscopic observations elongation, tensile tests, and IR measurements. The microphase separation region increased with increase in the degree of polymerization of the PVA. In the IR spectra of the blend films with high PVA contents cast under certain conditions, the absorption peak attributed to the cross-β-form conformation of SF appeared strongly. Gelatin, a water-soluble and natural polymer, was also used for comparison with SF. The ternary phase diagram in an a-PVA/gelatin/H2O system was obtained experimentally and the critical point was used to estimate the interaction parameter between PVA and gelatin molecules. The phase separation structure and the interaction between PVA and SF molecules were also discussed taking into consideration the results of the a-PVA/gelatin system. © 1998 SCI.  相似文献   

16.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

17.
Nanofiltration membranes based on poly(vinyl alcohol) (PVA) and ionic polymers, such as sodium alginate (SA) and chitosan, were prepared by casting the respective polymer solutions. The membranes prepared from PVA or PVA–ionic polymer blend were crosslinked in a isopropanol solution using glutaraldehyde as a crosslinking agent. The membranes were characterized with Fourier transform infrared spectroscopy and X‐ray diffractometry and swelling test. The membranes crosslinked through the acetal linkage formation between the  OH groups of PVA and the ionomer and glutaraldehyde appeared to be semicrystalline. To study the permeation properties, the membranes were tested with various feed solutions [sodium sulfate, sodium chloride, poly(ethylene glycol) with 600 g/mol of molecular weight (PEG 600), and isopropyl alcohol]. For example, the permeance and the solute rejection of the 1000 ppm sodium sulfate at 600 psi of upstream pressure through the PVA membrane were 0.55 m3/m2 day and over 99%, respectively. The effects of the ionomers on the permeation properties of the PVA membranes were studied using the PVA–SA and PVA–chitosan blend membranes. The addition of small amount of ionic polymers (5 wt %) made the PVA membranes more effective for the organic solute rejection without decrease in their fluxes. The rejection ratios of the PEG 600 and isopropanol were increased substantially. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1755–1762, 1999  相似文献   

18.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002  相似文献   

19.
聚乙烯醇/水滑石共混纤维的制备及其性能研究   总被引:1,自引:0,他引:1  
采用凝胶纺丝法制备聚乙烯醇/水滑石(PVA/HT)共混纤维。通过扫描电镜(SEM)观察水滑石在PVA/HT共混纤维中的分散状况和共混纤维的表面形态。从傅里叶变换红外光谱(FT-IR)可以看出HT和PVA之间存在明显的氢键作用;热重分析(TG)测试表明水滑石的加入可以有效提高PVA的热性能;加入适量的HT可以提高PVA纤维的断裂强度;随着HT含量的增加,PVA/HT共混纤维的最大拉伸倍数下降且表面易产生缺陷。  相似文献   

20.
The oxygen transmission rate, average volume of free‐volume cavities (Vf) and fractional free volume (Fv) of polyamide 6,10 (PA610)/poly(vinyl alcohol) (PVA) (i.e. PA610xPVA05y, PA610xPVA08y and PA610xPVA14y) blend films reduced to minimum values when their PVA contents reached corresponding optimal values. Oxygen transmission rate, Vf and Fv values obtained for optimal PA610xPVAzy blown films were reduced considerably with decreasing PVA degrees of polymerization. The oxygen transmission rate of the optimal bio‐based PA61080PVA0520 blown film was only 2.4 cm3 (m2·day·atm)?1, which is about the same as that of the most often used high‐barrier polymer, ethylene–vinyl alcohol copolymer. Experimental findings from dynamic mechanical analysis, differential scanning calorimetry, wide‐angle X‐ray diffraction and Fourier transform infrared spectroscopy of the PA610xPVAzy blends indicate that PA610 and PVA in the blends are miscible to some extent at the molecular level when the PVA contents are less than or equal to the corresponding optimal values. The considerably enhanced oxygen barrier properties of the PA610xPVAzy blend films with optimized compositions are attributed to the significantly reduced local free‐volume characteristics. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号