首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the performance of a solar heating system with a heat pump was investigated both experimentally and theoretically. The experimental results were obtained from November to April during the heating season. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load met by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. The average seasonal heating performance values are 4.0 and 3.0 for series and parallel heat pump systems, respectively. A mathematical model was also developed for the analysis of the solar heating system. The model consists of dynamic and heat transfer relations concerning the fundamental components in the system such as solar collector, latent heat thermal energy storage tank, compressor, condenser, evaporator and meteorological data. Some model parameters of the system such as COP, theoretical collector numbers (Nc), collector efficiency, heating capacity, compressor power, and temperatures (T1, T2, T3, TT) in the storage tank were calculated by using the experimental results. It is concluded that the theoretical model agreed well with the experimental results.  相似文献   

2.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Heat pump systems are recognized to be outstanding heating, cooling and water heating systems. They provide high levels of comfort as well as offering significant reductions in electrical energy use. In addition, they have very low levels of maintenance requirements and are environmentally attractive. The purpose of this study is to evaluate the experimentally performance and energy analysis of vertical ground-source heat pump (GSHP) for winter climatic condition of Erzurum, Turkey. For this aim, an experimental analysis was performed on GSHP system made up in the Energy Laboratory in the campus of Ataturk University. The experimental apparatus consisted of a ground heat exchanger, the depth of which was 53 m, a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement and control equipments. Tests were performed under laboratory conditions for space heating, in which experimental results were obtained during January–May within the heating season of 2007. The experimentally obtained results were used to calculate the heat pump coefficient of performance (COP) and the system performance (COPs). The COP and COPs were found to be in the range of 2.43–3.55 and 2.07–3.04, respectively. This study also shows that the system proposed could be used for residential heating in the province of Erzurum which is one of the coldest climate region of Turkey.  相似文献   

4.
A method of improving the performance of heat pumps for domestic space heating has been investigated. The study focuses on the short-term storage of heat pump output energy in concrete floor panels. This paper describes the dynamic computer simulation of an air to water heat pump, a floor panel energy store and energy flowpaths in a dwelling. The heating plant, controls and building thermal behaviour, were simulated as a complete energy system to enable the study of interactions between the subsystems. The model heating system comprised a number of under floor water heated panels installed in ground floor rooms of a two storey dwelling. Supplementary energy was supplied by direct electric heaters situated in most rooms. Heat pump operating periods were controlled as a function of the external air temperature within two prescribed occupancy intervals per day. Results of the investigation indicate that a heat pump system using floor panel storage and emission may be efficiently managed to provide nearly continuous heating with little supplementary energy input. The short-term storage of energy in thick floor panels allowed the heat pump to be operated for extended periods without cycling. Because of this, the seasonal loss in heat pump performance resulting from intermittent operation was less than 1 per cent. Attempting to supply the total space heating load with the heat pump and floor panel system resulted in severe overheating during periods of high solar or casual gain. Under these conditions the simple control strategy based on the measurement of external air temperature was ineffective. This problem was eliminated by reducing the heat pump energy input to the dwelling and supplying about 10 per cent of the seasonal energy demand by direct electric heaters. The influence of floor panel energy storage capacity on the performance of the heating system was investigated. Concrete panel depths of between 25 and 150 mm were considered. The seasonal system efficiency was found to increase with floor panel thickness, although not significantly with panel depths beyond 100 mm. The extensive use of floor slabs to store energy caused mean floor temperatures to be higher than when using direct electric air heaters only. However, with the depth of under floor insulation considered in the study (75 mm), heating the floor slab increased the seasonal energy loss of the building by only 4 per cent.  相似文献   

5.
An experimental solar assisted heat pump space heating system with a daily energy storage tank is designed and constructed, and its thermal performance is investigated. The heating system basically consists of flat plate solar collectors, a heat pump, a cylindrical storage tank, measuring units, and a heating room located in Gaziantep, Turkey (37.1°N). All measurements are automatically collected as a function of time by means of a measurement chain feeding to a data logger in combination with a PC. Hourly and daily variations of solar radiation, collector performance, coefficient of performance of the heat pump (COPHP), and that of the overall system (COPS) are calculated to evaluate the system performance. The effects of climatic conditions and certain operating parameters on the system performance parameters are investigated. COPHP is about 2.5 for a lower storage temperature at the end of a cloudy day and it is about 3.5 for a higher storage temperature at the end of a sunny day, and it fluctuates between these values in other times. Also, COPS turns out to be about 15–20% lower than COPHP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Ground-source heat-pump systems provide a new and clean way of heating buildings in the world. They make use of renewable energy stored in the ground, providing one of the most energy-efficient ways of heating buildings. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossil fuels simultaneously reduces. The aim of this study is to evaluate the performance of vertical ground-source heat-pump system for climatic condition of Erzurum having cold climate in Turkey. For this purpose, an experimental set-up was constructed. The experimental apparatus consisted of a series GHE (ground heat exchanger), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May for the months of heating season of 2008–2009. The experimental results indicate that the average heat-pump COP and overall system’s COPS values are approximately 3.0 and 2.6 in the coldest months of heating season. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

8.
In this paper, a solar combi-system which consists of solar collectors and a carbon dioxide heat pump is proposed and investigated through simulation and optimization. Performance analysis and comparison are primarily conducted to show the feasibility and reasonability of using a CO2 heat pump as an auxiliary heater under local weather conditions. Then, a system model with a test building in TRNSYS is developed for performance optimization. The most influential variables are identified using influence and sensitivity analyzes of single parameters. Subsequently, a multi-parameter optimization using the high-weight parameters is carried out to obtain a final design result. The simulated results of the optimized case show that the average coefficient of performance of the CO2 heat pump is 2.38, and the solar fraction of the system is 69.0% for the entire heating season. The time when a comfortable temperature level can be achieved in the indoor environment accounts for 81.6% of the entire heating season. Furthermore, the performance characteristics of the proposed system are evaluated in terms of the thermal balance, fraction of the thermal energy saving, feasibility of net zero energy, economic factor, and CO2 emissions reduction.  相似文献   

9.
搭建了太阳能、热泵辅助燃气的供热系统测试平台,对太阳能辅助燃气供热系统、热泵辅助燃气供热系统以及太阳能、热泵辅助燃气供热系统的热性能进行测试,并对三种供热系统的经济环境效益进行分析。试验结果表明,试验条件下,三种供热系统的修正后一次能源利用率分别为93.3%、92.8%、103.9%,与燃气供热系统相比,节能率分别为3.8%、3.2%和15.6%,年运行费用可节约275、236、1 016¥,每年减排CO2为123.00、106.00、455.00 kg。  相似文献   

10.
The energy saving obtainable with active solar heating and heat pumps has been studied for several years in the Northern climate of Finland. The studies deal mainly with small houses. A computer program is developed which calculates hour by hour the annual energy balance of different heating systems. The performance, of the heating systems are also measured in inhabited houses. The calculations show that the useful solar energy obtainable from the collector is 50–400 kWh/m2 annually depending on the system and the collector size. A heat pump in the system is very advantageous, because it keeps the heat losses low and the collector efficiency high. It approximately doubles the energy obtainable. The measurement results have not been as good as expected. The solar energy obtained from the collector has been 120–160 kWh/m2 annually. The main reasons for the low solar energy are design and equipment faults and the shading effects. The best energy saving device is the earth heat pump. It is also therefore very advantageous that the peak power demand decreases markedly. When the area of the earth pipes is large enough, energy may be extracted from earth through the whole year. The annual coefficient of performance is 2–3. Also a heat pump which extracts heat from exhaust air in dwelling houses has been very promising.  相似文献   

11.
This paper presents the modeling and optimization of a solar assisted heat pump using ice slurry. Solar collectors are used as the primary source of thermal energy, with two distinct loops allowing the collectors to operate in series with an ice tank, or a warm water tank. Thermal energy stored in the ice tank is transferred to a warm water distribution tank via a heat pump. First, a new mathematical model of an ice slurry storage tank is presented. Validation of the model with experimental data confirms its ability to predict the ice mass and tank fluid temperatures during the charging and discharging modes of operation. The developed ice tank model is combined with the TRNSYS energy simulation program to formulate a complete model of the proposed heat pump system. This computer model then serves as a base for a mathematical optimization with the objective to minimize the energy use for heating and DHW over a single heating season. Simulated results demonstrate the potential of the optimized system in reducing the heating operating energy use of a high performance home in Montreal, QC.  相似文献   

12.
In order to improve the performance of the solar-assisted and energy-storaged heat pump system, an experimental setup was constructed. In this study, the solar-assisted energy-storaged series heat pump system and other conventional heat pump systems with no energy storage (series and parallel heat pump systems) are experimentally investigated and compared. The experiments were made in July, August, September, October, November, and December in 1990, under the clear-sky conditions for three heat pump systems. The experimentally obtained results are used to calculate the collector efficiency nk, heat pump COP, and system COPsys (coefficient of performance). On the other hand, a dynamic simulation program has been developed for a solar-assisted and energy-storaged heat pump system. The experimental results were compared with the dynamic simulation results.  相似文献   

13.
Performance of combined solar-heat pump systems   总被引:1,自引:0,他引:1  
A comparative study of the performance of combined solar heat pump systems for residential space and domestic hot water heating has been undertaken. Simulations have been made with TRNSYS[1] of three basic combined configurations, as well as conventional solar and conventional heat pump systems, in two different climates, Madison, Wisconsin, and Albuquerque, New Mexico.The three combined systems are the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. The influence of collector area, number of glazings, main storage volume to collector area ratio, and heat pump coefficient of performance were determined.The results indicate that the parallel combined system is probably the most practical solar-heat pump configuration. The thermal performance at a given collector area is consistently superior to both the series or the dual source systems over the heating season. Costs and the extent to which summer cooling is a requirement determine the relative merit of the conventional heat pump, conventional heat pump, conventional solar, and parallel systems.  相似文献   

14.
The optimization of a district solar heating system with an electric-driven heat pump and seasonal heat storage is discussed. The optimization process comprises thermal, economic and system control analyses. Thermal and economic optima have been derived for collector area and storage volume simultaneously. The effects of different collector types and building loads are also investigated. Summertime charging of the storage by off-peak electricity has been applied to avoid severe peaking of auxiliary in the winter and to reduce the yearly energy cost. The thermal co-storage of electric energy is emphasized with systems which fail to supply heat for the heat pump during the winter heating season.‡ It has been found that system cost-effectiveness is only slightly affected as storage volume is increased beyond the optimum size. Large variations in the optima for different system configurations were found. The minimum cost of heat supplied in an optimal 500-unit community with 90% solar fraction was estimated at 8.9 ¢ kWh−1.  相似文献   

15.
In this study, the compression heat pump system using wastewater, as a heat source, from hotel with sauna was designed and analyzed. This study was performed to investigate the feasibility of the wastewater use for heat pump as a heat source and to obtain engineering data for system design. This heat pump system uses off-peak electricity that is a cheap energy compared to fossil fuel in Korea. For this, the charging process of heat into the hot water storage tank is achieved only at night time (22:00–08:00). TRNSYS was used for the system simulation with some new components like the heat pump, which we create ourselves.As a result, it was forecasted that the yearly mean COP of heat pump is about 4.8 and heat pump can supply 100% of hot water load except weekend of winter season. The important thing that should be considered for the system design is to decrease the temperature difference between condenser and evaporator working fluids during the heat charging process by the heat pump. This heat pump system using wastewater from sauna, public bath, building, etc. can therefore be effectively applied not only for water heating but also space heating and cooling in regions like as Korea.  相似文献   

16.
This paper deals with the utilization of a renewable energy‐based integrated system with the latent heat storage option for building thermal management systems. Both energy and exergy‐based assessments of the current combined system are conducted. For this purpose, phase change material (PCM)‐embedded radiant wall heating system using solar heating and ground source heat pump (GSHP) is studied thermodynamically. Heat is essentially stored within the PCMs as used in the panels to increase the effectiveness. The stored heat is released when the solar energy is not available. In the thermal energy storage analyses, four different PCMs are considered. The present results show that the overall first ‐ law (energy) and second ‐ law (exergy) efficiencies of the PCM‐free radiant heating system are much lower than the case with the PCM‐embedded radiant heating system. Therefore, it is confirmed that the energy efficiency increases from 62% to 87% while the exergy efficiency rises from 14% to 56% with the option where SP26E PCM is employed accordingly.  相似文献   

17.
《热科学学报(英文版)》2021,30(5):1491-1502
This paper introduces a novel solar-assisted heat pump system with phase change energy storage and describes the methodology used to analyze the performance of the proposed system. A mathematical model was established for the key parts of the system including solar evaporator, condenser, phase change energy storage tank, and compressor. In parallel to the modelling work, an experimental set-up of the proposed solar energy storage heat pump system was developed. The experimental data showed that the designed system is capable of meeting cold day heating demands in rural areas of Yanbian city located in Jilin province of China. In day-time operation, the solar heat pump system stores excess energy in the energy storage tank for heating purposes. A desired indoor temperature was achieved; the average coefficient of performance of solar heat pump was identified as 4.5, and the system showed a stable performance throughout the day. In night-time operation, the energy stored in the storage tank was released through a liquid-solid change of phase in the employed phase-change material. In this way, the provision of continuous heat for ten hours was ensured within the building, and the desired indoor air conditions were achieved.  相似文献   

18.
Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ~29°C in summer and 21°C during winter season. The appropriate melting point was ~27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.  相似文献   

19.
This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38°03′, long. E114°26′), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth.  相似文献   

20.
小型太阳能热泵地板供暖系统的优化研究   总被引:1,自引:1,他引:0  
刘立平  阙炎振 《节能技术》2009,27(4):377-379,382
建立了太阳能热泵地板供暖系统的能量分析、可用能分析数学模型,模拟了上海供暖期的气候条件,给出了系统各部件的可用能损失情况。着重从太阳能集热器并联的组数出发对系统进行了优化研究,并给出了系统供暖性能系数和可用能效率,为该系统的设计及应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号