首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the conditions of preparation on the properties of powdered poly(ethylene terephthalate) was followed from the point of view of its specific surface. The powdered poly(ethylene terephthalate) prepared by reprecipitation from the melt of 6-caprolactam has a porous and structured surface, and consequently, also a large specific surface in comparison with the powedered poly(ethylene terephthalate) prepared by mechanical milling. The specific surface value is influenced by the cooling rate of the initial homogeneous melt of poly(ethylene terephthalate)-6-caprolactam, by the concentration of poly(ethylene terephthalate) in this melt and by its molecular weight, by the water temperature at the extraction of 6-caprolactam from the tough mixed melt, by the drying temperature of the powdered poly(ethylene terephthalate), and by the content of residual 6-caprolactam in the powdered product. In the examined area, the specific surface value of the powdered poly(ethylene terephthalate) prepared by reprecipitation from the melt of 6-caprolactam ranged from 10 to 110 m2·g?1.  相似文献   

2.
Graft copolymerization of poly(aniline) and poly(o‐toluidine) onto poly(ethylene terephthalate) fiber was conducted by using peroxydisulfate as a lone initiator under nitrogen atmosphere at various experimental conditions in aqueous hydrochloric acid medium. The grafting of poly(aniline) and poly(o‐toluidine) onto poly(ethylene terephthalate) fiber was verified by recording cyclic voltammetry of the grafted fiber, conductivity measurements, and thermal analysis. Graft parameters—such as % grafting, % efficiency, and the rate of grafting—were followed. Grafting was always accompanied by homopolymerization. The rate of homopolymerization was also followed in all experimental conditions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 121–128, 1999  相似文献   

3.
Polymerization and copolymerization of vinyl monomers such as acrylamide, acrylonitrile, vinyl acetate, and acrylic acid with a redox system of Ce(IV) and organic reducing agents containing hydroxy groups were studied. The reducing compounds were poly(ethylene glycol)s, halogen‐containing polyols, and depolymerization products of poly(ethylene terephthalate). Copolymers of poly(ethylene glycol)s‐b‐polyacrylonitrile, poly(ethylene glycol)s‐b‐poly(acrylonitrile‐co‐vinyl acetate), poly(ethylene glycol)s‐b‐polyacrylamide, poly(ethylene glycol)s‐b‐poly(acrylamide‐co‐vinyl acetate), poly(1‐chloromethyl ethylene glycol)‐bpoly(acrylonitrile‐co‐vinyl acetate), and bis[poly(ethylene glycol terephthalate)]‐b‐poly(acrylonitrile‐co‐vinyl acetate) were produced. The yield of acrylamide polymerization and the molecular weight of the copolymer increased considerably if about 4% vinyl acetate was added into the acrylamide monomer. However, the molecular weight of the copolymer was decreased when 4% vinyl acetate was added into the acrylonitrile monomer. Physical properties such as solubility, water absorption, resistance to UV light, and viscosities of the copolymers were studied and their possible uses are discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1385–1395, 1999  相似文献   

4.
Acrylic acid (AA) was grafted onto the surface of poly(ethylene terephthalate) (PET) fabric after having short-time corona-discharge treatment (CDT) in an atmosphere in the presence of the initiator. The effect of N,N-dimethylformamide (DMF) pretreatment time, CDT time, graft copolymerization time and temperature, concentration of AA, and the content of initiator on graft yield of PET fabric was discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1161–1164, 1999  相似文献   

5.
This study deals with the generation of poly(ethylene terephthalate)/organoclay nanocomposite filaments by the melt‐spinning method and with the investigation of their morphological and dyeing properties. Different montmorillonite types of clay (Resadiye and Rockwood) were modified using different intercalating agents, and poly(ethylene terephthalate) nanocomposite filaments containing 0.5 and 1 wt% organoclays were prepared. Afterwards, the filaments were dyed with two disperse dyes (Setapers Red P2G and Setapers Blue TFBL‐NEW) at different temperatures (100, 110, and 120 °C) in the absence/presence of a carrier. Organoclays and poly(ethylene terephthalate)/organoclay nanocomposites showed an increased d‐spacing between clay layers. Irrespective of clay and surfactant type, poly(ethylene terephthalate)/organoclay nanocomposite filaments dyed at 120 °C in the presence of only a very small amount of carrier showed appreciable dyeability in comparison with neat poly(ethylene terephthalate). The dyeability of the organoclay‐containing poly(ethylene terephthalate) samples was found to be better in spite of having increased degrees of crystallinity. Moreover, the colour fastness properties of the clay‐containing samples were not affected adversely.  相似文献   

6.
To improve the bonding ability of artificial hair towards soft tissue, type I atelocollagen was immobilized onto the hair surface. The artificial hair used was made of a poly(ethylene terephthalate) monofilament. Following photo-induced graft polymerization of a hydrophilic monomer onto the surface of artificial hair, collagen was complexed with the graft chains. Poly(acrylic acid) was selected as the polymer to be grafted onto the artificial hair because this synthetic polymer exhibited the greatest ability to form an interpolymer complex in solution with collagen among the three anionic polymers poly(acrylic acid), poly(2-acrylamido methylpropane sulfonic acid), and sodium poly(styrene sulfonic acid). When the surface of the poly(ethylene terephthalate) film used as a model substrate was grafted with poly(acrylic acid), the surface density of the collagen immobilized by interpolymer complexation was found to increase with increasing surface density of the graft chains. Immobilization of collagen onto the filament surface was confirmed by surface analysis with X-ray photoelectron spectroscopy and transmission electron microscopy. It was shown that in vitro degradation of the collagen immobilized onto poly(ethylene terephthalate) was suppressed by crosslinking the collagen molecules with glutaraldehyde. Cell culture tests revealed that L-cells were attached well to the surface of collagen-immobilized artificial hair. The surface-modified hairs were implanted percutaneously in the scalp of a human volunteer. Neither infection nor rejection of the hair filaments was observed after 1 year of implantation. It was found that the number of collagenimmobilized filaments remaining fixed in the scalp after 3 years of implantation was significantly larger than that of untreated filaments. These results indicate that surface-modified artificial hair is highly biosafe and shows excellent tissue adhesion.  相似文献   

7.
An oxazoline-functionalized core–shell impact modifier was synthesized between aminoethanol and acrylonitrile/butadiene/styrene high rubber powder. According to the Fourier transform infrared spectroscopy test, the nitrile groups were partially converted into oxazoline groups successfully. The oxazoline-functionalized acrylonitrile/butadiene/styrene high rubber powder was used as an impact modifier for acrylonitrile–butadiene–styrene/poly(ethylene terephthalate) blends. The differential scanning calorimeter and rheological tests demonstrated that poly(ethylene terephthalate) was partially miscible with acrylonitrile–butadiene–styrene, because the oxazoline groups of oxazoline-functionalized acrylonitrile/butadiene/styrene high rubber powder reacted with the end groups of poly(ethylene terephthalate). The results of scanning electron microscopy indicated that the morphology of acrylonitrile–butadiene–styrene/poly(ethylene terephthalate) blends with proper oxazoline-functionalized acrylonitrile/butadiene/styrene high rubber powder content was improved significantly. The best mechanical properties were achieved, When 6 wt% oxazoline-functionalized acrylonitrile/butadiene/styrene high rubber powder was added into acrylonitrile–butadiene–styrene/poly(ethylene terephthalate) blends.  相似文献   

8.
Gelation of poly(ethylene terephthalate) by heating at 263°–300°C was investigated. Under nitrogen flow, crosslinks were scarcely formed. However in air, degradation and crosslinking were common, and these were accelerated by purging gaseous and sublimable degradation products out of the system with a stream of air. The main component of the sublimate was terephthalic acid. Infusible and insoluble gel was treated with methanol at 260°C, and then the methanolysis products were separated into two parts. The methanol-insoluble part exhibited a polyene structure with ester groups, and the methanol-soluble part contained dimethyl terephthalate, ethylene glycol, and some 1,2,4-butanetriol. To clarify the relation between the crosslinking and the formation of vinyl ester groups, the degradation of vinyl methyl terephthalate was studied. Thermoxidative degradation of linear polyesters other than poly(ethylene terephthalate) was also studied. Poly(ethylene isophthalate) and poly(ethylene sebacate) were easily gelated. However, poly(trimethylene terephthalate) and poly(neopentyl terephthalate) were scarcely gelated. The primary reaction leading to crosslinking is assumed as follows. At first, the random scission of polyester chain may take place forming carboxylic acids, vinyl esters, aldehydes, etc. After accumulation of vinyl esters to some extent, vinyl polymerization of the esters takes place and network structures are formed.  相似文献   

9.
The photochemical grafting of 2-hydroxyethylmethacrylate onto low-density polyethylene film is described. The grafting technique employed involved irradiating a solution of 2-hydroxyethylmethacrylate and benzophenone in acetone spread between films of poly(ethylene terephthalate) or glass and low-density polyethylene. After irradiation for 2 min, the contact angle of the polyethylene films with water fell from 97° to about 50°. The contact angle of the poly(ethylene terephthalate) substrate also fell during grafting. X-ray photoelectron spectroscopy was consistent with the presence of poly(2-hydroxethylmethacrylate) at the surface of the polyethylene. The effect of solvent on the photochemical grafting of 2-hydroxyethylmethacrylate onto low-density polyethylene is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Influence of alkyl (C12–C14)-dimethyl-benzyl ammonium chloride in the solution of sodium hydroxide on the hydrolysis of poly(ethylene terephthalate) (PET), anionically modified poly(ethylene terephthalate) copolyster (CDP), and block polymer of poly(ethylene terephthalate)-poly(ethylene glycol) (EDP), has been studied under a variety of proportions, concentrations, time and temperature of reaction, M : L ratio, etc. Mechanical properties of treated polymeric materials are evaluated. Hydrolysis of two polymers in the same bath is compared with that in separate baths.  相似文献   

11.
This study deals with the effects of pH and neutral salts on the adsorption of PET fiber with four kinds of poly(ethylene glycol terephthalate) condensated from dimethyl terephthalate (DMT) and poly(ethylene glycol) (PEG). The surface properties of the aqueous solution, the contact angle of polyol‐treated PET fabrics, and its parameters were also discussed. The pH of the solution or the adding of neutral salt in the polyol solution largely affected the contact angle of polyol‐treated PET fabrics as well as the surface tension of the solution. A lower pH of the polyol solution or adding neutral salts in the solution showed a lower surface tension and a lower contact angle that resulted in a better adsorption between polyol and poly(ethylene terephthalate) fibers. The lower pH of the solutions and a higher valence of the added neutral salt in the solution showed a largely positive effect on the adsorption parameters, and the order of effectiveness is Al2(SO4)3 > MgSO4 > Na2SO4.  相似文献   

12.
A study has been carried out to correlate the wet fastness properties of dyed knitted fabrics, derived from both poly(ethylene terephthalate) and poly(lactic acid) (Ingeo) fibres, with the thermal migration properties of the disperse dyes during heat treatment. The results indicate a greater amount of disperse dye at the surface of the Ingeo fibre fabric than the poly(ethylene terephthalate) fabric, after post heat‐setting using the conditions needed for fabric stabilisation, correlating well with its slightly lower wash fastness properties.  相似文献   

13.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

14.
Poly(ethylene terephthalate) films were irradiated in a carbon-arc Fade-Ometer and in a xenon-arc Weather-Ometer. The changes in tensile properties, intrinsic viscosities, infrared absorption, and fluorescence emission spectra resulting from these irradiations were measured. Quantitative comparisons between changes in surface (ATR) and transmission infrared spectra, in conjunction with the other results obtained, have established the importance of surface reactions in the photodeterioration of poly(ethylene terephthalate).  相似文献   

15.
Poly(ethylene terephthalate) fibres grafted with poly(vinyl acetate) by γ-radiation were hydrolysed under alkaline and acidic conditions in order to obtain poly(ethylene terephthalate)-graft-poly(vinyl alcohol) fibres. In alkaline media poly(ethylene terephthalate) degraded without appreciable conversion of acetate to hydroxyl groups. During acid hydrolysis no change in tensile properties of the fibres was observed up to an extent of 50% conversion of acetate to hydroxyl groups. Further change in the tensile strength and the elongation at break was attributed partly to the grafted poly(vinyl acetate)/poly(vinyl alcohol) balance and partly to the loss due to degradation of the fibres.  相似文献   

16.
The influence of the ArF laser irradiation on the surface energy of poly(ethylene terephthalate) was investigated. An effort was also made to elucidate the physical and chemical phenomena affecting surface energy (SE). The surface chemical changes, occurring upon the irradiation, were monitored by X-ray photoelectron spectroscopy (XPS) and the changes in the surface geometrical structure were investigated by atomic force microscopy (AFM). The contact angle values obtained with test liquids of different polarity (water and diiodomethane) were measured while the surface energy was calculated by the Owens–Wendt method. The nature of the physico-chemical changes occurring in the poly(ethylene terephthalate) surface layer upon ArF laser irradiation depended mostly on the energy per unit area of the laser pulse and the number of the laser pulses. The polar and dispersive components of the surface energy increased as a result of increasing the number of the laser pulses of energy which were below that of the PET ablation threshold.  相似文献   

17.
Poly(ethylene terephthalate) containing hexabromobenzene, tricresyl phosphate, or a combination of triphenyl phosphate and hexabromobenzene, pentabromotoluene, or octabromobiphenyl was extruded or spun at 280°C into monofilaments or low-denier yarn, respectively. Only combinations of the phosphorus- and halogen-containing compounds resulted in flame-retardant poly(ethylene terephthalate) systems, without depreciating their degree of luster and color quality. The melting temperature, the reduced viscosity, and the thermal stability above 400°C of these flame-retardant systems were in most cases comparable to those of poly(ethylene terephthalate) itself. Phosphorus-bromine synergism was proposed with flame inhibition occurring mostly in the gas phase.  相似文献   

18.
This paper reviews the state of the art in the field of the hydrolytic degradation of poly(ethylene terephthalate) (PET) under bio-environmental conditions. Most of the papers published so far on this subject have been focused on the hydrolysis of PET at high temperatures. Although some authors claim to enhance the biodegradation properties of this aromatic polyester by copolymerization with readily hydrolysable aliphatic polyesters, no clear and satisfying conclusions can yet be formulated. Poly(ethylene terephthalate-co-lactic acid), poly(ethylene terephthalate-co-ethylene glycol), and poly(ethylene terephthalate-co-ε-caprolactone) block and random copolymers are the modifications mainly investigated for biodegradable applications. The hydrodegradability and biodegradability of PET, PET copolymers and PET blends are detailed in this review. A total of 89 references including 16 patents are cited. © 1999 Society of Chemical Industry  相似文献   

19.
To further investigate the contribution of polymer relaxation times to the mechanism of disperse dye adsorption on poly(ethylene terephthalate) fibres, the temperature-dependent uptake of Teratop Yellow HL-G 150% on both cotton and polyamide 66 fabrics at temperatures between 30 and 130°C was compared with that on poly(ethylene terephthalate) fabric. Although uptake of the commercial grade dye on polyester fabric is governed by the thermally regulated, broad glass transition of the water-saturated poly(ethylene terephthalate) substrate, as this was not observed for either cotton or nylon 66 fabrics, the respective cellulose or polyamide 66 polymer glass transition does not present a major thermal impediment to dye uptake over the wide range of dyeing temperatures used. This is because the onset and end-set temperatures of the glass transition of the water-plasticised poly(ethylene terephthalate) material reside within the range of dyeing temperatures employed, whereas those of the water-plasticised cotton and polyamide materials occur below the lowest dyeing temperature examined (30°C). The thermal dependency of disperse dye solubility also likely makes a meaningful contribution to the temperature-dependent dye uptake observed for each type of fibre.  相似文献   

20.
The alkali hydrolysis of poly(ethylene terephthalate), anionic copolymer of poly(ethylene terephthalate), and block copolymer of poly(ethylene terephthalate)–poly(ethylene glycol) is investigated under a variety of conditions of alkali concentration in aqueous bath, additives, time, and temperature. Measurements of loss in weight, linear density, breaking load, tenacity, elongation to break apart from intrinsic viscosity, fiber density, COOH-end group content, diameter of filaments, and scanning electron micrographs have been analyzed to identify the differences in the action of alkali on these polymer materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号