首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyterminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐PU, was synthesized by two‐step polymerization and was firstly used as membrane materials to recover aroma, ethyl acetate (EA), from aqueous solution by pervaporation (PV). The effects of the number–average molecular weight (Mn) of HTPB, EA in feed, operating temperature, and membrane thickness on the PV performance of HTPB‐PU membranes were investigated. The membranes demonstrated high EA permselectivity as well as high EA flux. The DSC result showed two transition temperatures in the HTPB‐PU membrane and contact angle measurements revealed the difference of hydrophobicity of the membrane at both sides, which were induced by glass plate and air, respectively, due to movement of the soft hydrophobic polybutadiene (PB) segments in HTPB‐PU chains. Furthermore, the PV performance of the HTPB‐PU membrane with the hydrophobic surface facing the feed was much better than that with the hydrophilic surface. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 552–559, 2007  相似文献   

2.
Hydroxyl‐terminated polybutadiene (HTPB), 4,4′‐dicyclohexyl methane diiscyanate (H12MDI), and 1,4‐butane diol are used to synthesize polyurethane (PU) solutions by two‐stage process. Interpenetrating networks (IPNs) of HTPB‐based PU and poly(methyl methacrylate) (PMMA) with HTPB/MMA (wt/wt % ratio) = 2.0, 1.5, 1.0, 1.5, 0.8, and 0.6, which are designated as IPN1 to IPN5, respectively, are synthesized by sequential polymerization technique. Thermal properties, tensile strength, and contact angle of membranes increase with the increase of MMA content, while the elongation of membranes show the reverse trend. Characterization of membranes are investigated by C?C/C?O absorption ratio and infrared absorption frequency shiftment. These PU and IPN membranes are used for the separation of ethanol/water and isopropanol/water solution by pervaporation test. IPN3 membrane possesses the largest pervaporation permeability and the separation factor. The pervaporation results of ethanol/water feed has the same trend as that of isopropyl alcohol (IPA)/water solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Cross‐linked hydroxy terminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐divinyl benzene (DVB)‐PU, was synthesized by a three‐step polymerization process. It was first used as membrane material to separate p‐/o‐xylene mixtures by pervaporation (PV). The effects of the content of cross‐linker DVB, feed concentration, and operating temperature on the PV performance of HTPB‐DVB‐PU membranes were investigated. The membranes demonstrated p‐xylene permselectivity as well as high total flux. The introduction of DVB significantly enhanced the temperature resistance ability of the HTPB‐DVB‐PU membranes. With increasing DVB content, the separation factor increased while the total flux decreased a little. The highest separation factor reaches 2.01 and the total flux is 33 g/m2h with feed concentration of 10 wt % p‐xylene at 30°C. These PV performances with increasing DVB content were explained in terms of the view point of chemical compositions and physical structures of the HTPB‐DVB‐PU membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The carboxyl group containing aqueous‐based polyurethane (PU) dispersions were prepared from isophorone diisocyanate, poly(propylene glycol)‐1000, and 2,2‐dimethylol propanic acid via a PU prepolymer process. The amino content of this amino‐terminated aqueous‐based PU system was determined by a styrene oxide titration method. Glycidyl methacrylate (GMA) copolymer emulsions were prepared by an emulsion polymerization of GMA and other alkyl acrylates. The curing behavior of the GMA copolymer was demonstrated by a model reaction of the GMA copolymer with ethylenediamine. In the same token, the reaction took place between the PU amino groups and the GMA copolymer epoxides at ambient temperature and resulted in the formation of a hybridized homogeneous copolymer. This hybridized copolymer also consisted of carboxylic acid on the PU fraction after drying. Carboxylic acids of the copolymer were exchanged with calcium ion and this ionic coordination resulted in a calcium ion‐crosslinked copolymer. The physical and mechanical properties and the thermal behaviors of the hybridized copolymers were evaluated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 903–913, 1999  相似文献   

5.
Polyacrylonitrile (PAN)‐based copolymers containing phosphonic acid moiety were synthesized for dehydration of aqueous pyridine solution. The in situ complex, formed between the vinylphosphonic acid (VP) moiety in the membrane and the pyridine in the feed, enhanced separation capacity of poly(acrylonitrile‐co‐vinylphosphonic acid) (PANVP) membranes. All the PAN‐based membranes containing phosphonic acid were very selective toward water. The pervaporation performances of PANVP membranes depended on the content of the phosphonic acid moiety in the membrane and operating temperature. The pervaporation separation of water/pyridine mixtures using PANVP membranes exhibited over 99.8% water concentration in permeate and flux of 4–120 g/m2/h depending on the content of vinylphosphonic acid and operating temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 83–89, 1999  相似文献   

6.
Conventionally vulcanized styrene–butadiene rubber/natural rubber blend membranes were prepared for the pervaporation separation of alkane–acetone mixtures. Swelling measurements were carried out in both acetone and n‐alkanes to investigate the swelling behavior of the membranes. The swelling behavior was found to depend on the composition of the blend. The effects of blend ratio, feed composition, and penetrant size on the pervaporation process were analyzed. The permeation properties have been explained on the basis of interaction between the membrane and solvents and blend morphology. The SBR/NR 70/30 blend membrane showed higher selectivity among all the membranes used. Flux increases with increasing alkane content in the feed composition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3059–3068, 1999  相似文献   

7.
The disadvantage of dense polyamide membranes when applied in the pervaporation separation process is their low permeation rates. To improve the pervaporation performance, polyamide thin‐film composite membranes were prepared via the interfacial polymerization reaction between ethylenediamine (EDA) and trimesoyl chloride (TMC) on the surface of modified polyacrylonitrile (mPAN) membranes. These composite membranes were applied in the pervaporation separation of alcohol aqueous solutions. On the basis of the best pervaporation performance, the desired polymerization conditions for preparing the polyamide thin‐film composite membranes (EDA–TMC/mPAN) were as follows: (1) the respective concentration and contact time of the EDA aqueous solution were 5 wt % and 30 min and (2) the respective concentration of and immersion time in the TMC organic solution were 1 wt % and 3 min. The polyamide thin‐film composite membranes (EDA–TMC/mPAN) exhibited membrane durability when applied in the pervaporation separation of a 90 wt % isopropyl alcohol aqueous solution at 70°C, which indicated that the polyamide thin film composite (TFC) membranes were suitable for the pervaporation separation process at a high operating temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The pervaporation performances of a series of functionalized syndiotactic poly(styrene‐co‐4‐methylstyrene) (SPSM) membranes for various alcohol mixtures were investigated. The syndiotactic polystyrene copolymers, poly(styrene‐co‐4‐methylstyrene) (SPSM), were prepared by styrene with 4‐methylstyrene using a Cp*Ti(OCH3)3/methyl aluminoxane (metallocene/MAO) catalyst. The effect of functionalization on the thermal properties and polymer structure of the SPSM membranes were also investigated. The crystallinity of the functionalized SPSM membrane is lower than that of the unfunctionalized SPSM membranes. The water molecules preferentially permeate through the SPSM membranes. Compared with unfunctionalized SPSM membranes, the functionalized SPSM membrane effectively increases the membrane formation performances and the pervaporation performances. The optimun pervaporation performance (a separation factor of 510 and permeation rate of 220 g/m2h) was obtained by the bromination of SPSM (SPSMBr) membrane with a 90 wt % aqueous ethanol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2247–2254, 2002  相似文献   

9.
Poly(urethane‐urea)s (PUUs) from 2,4‐tolylene diisocyanate (2,4‐TDI), poly(oxytetramethylene)diols (PTMO) or poly(butylene adipate)diol (PBA), and various diamines were synthesized and characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and density measurements. Transport properties of the dense PUU‐based membranes were investigated in the pervaporation of benzene–cyclohexane mixtures. It was shown that the pervaporation characteristics of the prepared membranes depend on the structure and length of the PUU segments. The PBA‐based PUUs exhibit good pervaporation performance along with a very good durability in separation of the azeotropic benzene–cyclohexane mixture. They are characterized by the flux value of 25.5 (kg μm m−2 h−1) and the separation factor of 5.8 at 25°C, which is a reasonable compromise between the both transport parameters. The PTMO‐based PUUs display high permeation flux and low selectivity in separation of the benzene‐rich mixtures. At the feed composition of 5% benzene in cyclohexane, their selectivity and flux are in the range of 3.2 to 11.7 and 0.4 to 40.3, respectively, depending on the length of the hard and soft segments. The chemical constitution of the hard segments resulting from the chain extender used does not affect the selectivity of the PUU membranes. It enables, however, the permeability of the membranes to be tailored. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1615–1625, 1999  相似文献   

10.
Pervaporation of water-ethanol mixtures through plasma graft polymerization of acrylamide onto crosslinked hydroxyl terminated poly-butadiene (HTPB) based PU membranes, plasma graft polymerization of acrylamide onto crosslinked PU membrane (AAm-p-CPU), were investigated. The grafting was dependent on the discharge power and pretreatment period. The effects of crosslinking, plasma treatment conditions, feed compositions, and feed temperature on the performance of these membranes were studied. The physical properties of crosslinked membrane were better than those of the uncrosslinked membrane. In addition, compared with crosslinked PU membranes (CPU), the plasma modified crosslinked PU membranes effectively improve the pervaporation separation performances.  相似文献   

11.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

12.
With the action of catalyst and cosolvent, a series of hydroxyl‐terminated polydimethylsiloxane (HPMS) based polyurethane (PU) micro‐emulsion were gotten by surfactant‐free copolymerization. They were successfully prepared by reacting isophorone isocyanate, poly(tetramethylene glycol), and HPMS with N‐methyldiethanolamine (MDEA) as chain extender and trimethylolpropane (TMP) as crosslinker. After neutralizing with dimethyl sulfate and inversing the emulsion polymerization with deionized water, a series of microemulsions were obtained. The emulsions were then cast into membranes named as PU–HPMS. The mechanical properties and water absorption of the PU–HPMS were determined and simultaneously the effects of the content of hard segment, solvent, TMP, MDEA, HPMS, and the molecular weight of soft segment were studied. It is noticed that the tensile strength decreased and elongation at break increased in the HPMS/PU when compared with pure PU, which confirm that PU was end‐capped with PDMS. It is also noticed that water absorption increased in the HPMS/PU when compared with pure PU. As HPMS content increased from 0.0 to 25.0 wt %, the surface free energies decreased from 0.3446 to 0.2317 mN/cm and water absorption decreased from 11.2% to 0.14%. The surface free energies of the membranes were decreased by more than 32.76%, which demonstrate that the membrane surfaces have excellent water and oil repellency. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 40–46, 2006  相似文献   

13.
Crosslinked oligosilylstyrene–poly(dimethylsiloxane) composite membranes were used to separate 1,2‐dimethoxyethane (1,2‐DME) from dilute aqueous solutions through a pervaporation process. The composite membranes were prepared through the casting of solutions of H‐terminated oligosilylstyrene and vinyl‐terminated poly(dimethylsiloxane) onto the surfaces of polysulfone ultrafiltration membranes. A crosslinked poly(dimethylsiloxane) gel was generated through the reaction of H‐terminated oligosilylstyrene and vinyl‐terminated poly(dimethylsiloxane), with a platinum complex used as a catalyst. The pervaporation characteristics of the composite membranes were investigated with respect to the feed composition of 1,2‐DME, the feed temperature, the downstream pressure, and the top‐layer thickness of the composite membranes. The composite membranes exhibited preferential selectivity to 1,2‐DME. Depending on the operation conditions, the separation factor and permeation rate of 1,2‐DME were 55–184 and 0.31–3.3 g/m2 h, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2284–2294, 2004  相似文献   

14.
Emission of sulfur compounds to the atmosphere is universally recognized as one key target to be reduced. For membrane pervaporation which is considered as a potential purification process of fuels, dual‐layer polyurethane (PU)/polyethersulfone hollow‐fiber membranes were prepared. A novel fabrication technique is proposed using a quadruple spinneret to produce the fiber with such morphology by simultaneous spinning of two polymer solutions in the presence of two corresponding precipitation media. Activated carbon was added into the PU solution to improve the transport properties of the selective layer. Resulting hollow‐fiber membranes showed very good adhesion between the selective layer and its support, in addition to an effective removal of a sulfur compound such as 2‐methyl thiophene from a typical model fuel, an indication of good prospects for both the fabrication technique and for sulfur removal by pervaporation of fuels.  相似文献   

15.
In this study, we conducted the reversible addition–fragmentation chain‐transfer (RAFT) polymerization of styrene (St) in a miniemulsion system stabilized by two different stabilizers, ammonlysis poly(styrene‐alt‐maleic anhydride) (SMA) and sodium dodecyl sulfate (SDS), with identical reaction conditions. The main objective was to compare the polymerization kinetics, living character, latex stability, and particle morphology. The macro‐RAFT agent used in both systems was SMA, which was obtained by RAFT solution polymerization mediated by 1‐phenylethyl phenyldithioacetate. The experimental results show that the St RAFT miniemulsion polymerization stabilized by SDS exhibited a better living character than that stabilized by ammonlysis SMA. The final latices were very stable in two systems, but different stabilizers had an obvious effect on the polymerization kinetics, living character, and particle morphology. All of the particles obtained by RAFT miniemulsion polymerization stabilized by SDS were solid, but an obvious core–shell structure was observed in the miniemulsion system stabilized by ammonlysis SMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
采用两步法制备了ZSM-5沸石填充的疏水性端羟基聚丁二烯基聚氨酯(PU)膜,用以分离水中芳香性有机物乙酸异丙酯。对该膜的化学结构、形貌及热稳定性进行了表征,并研究了ZSM-5沸石填充的PU膜的溶胀度及渗透汽化性能。结果表明:添加ZSM-5沸石后,膜的热稳定性明显提高,沸石与膜的相容性较好,且随着添加量的增加,膜的溶胀度降低,分离因子先升后降。在303 K、料液浓质量分数为1%的条件下,ZSM-5添加量为20%(质量分数)时,分离因子达到最高;同时随着料液浓度及操作温度的上升,通量和分离因子都增加。在333 K、料液质量分数为1%的条件下,PU-ZSM-5-20膜的分离因子及通量最高可达288.72 g/(m2·h)和53.21 g/(m2·h)。  相似文献   

17.
Anionic aqueous‐based polyurethane (PU) dispersions were derived from a water dispersion process of carboxylic groups containing PU prepolymers together with a neutralization and a chain extension. These PU prepolymers were prepared from a conventional polyaddition of isophorone diisocyanate, polypropylene glycol‐1000, and dimethylolpropanic acid. A covalently bonded phosphorus was introduced into PU by a phosporus‐containing curing agent. A series of phosphorus and multi‐aziridinyl groups containing curing agents were synthesized for this purpose. Each of them served in a dual‐function capacity as a postcuring agent for the anionic aqueous‐based PU system. The resulting postcured PU exhibited improvements in its mechanical, physical, and thermal properties; furthermore, postcured PU synergistic flame inhibition was also observed due to the presence of nitrogen and phosphorus content in the process. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2499–2509, 1999  相似文献   

18.
A series of novel solvent‐soluble polyimides based on the diamine of 3,3‐bis[4‐(4‐aminophenoxy)phenyl] phthalide (BAPP) were prepared. The effects of the dianhydride structures on the pervaporation performance of aqueous alcohol mixtures through these polyimide membranes were studied. The BAPP‐based polyimide membranes exhibited water permselectivity during all process runs. The permeation rate increased with the addition of bulky groups to the polyimide backbone. The effects of the feed solution concentration, feed solution temperature, and carbon atom number of the feed alcohol on the pervaporation performance were also investigated systematically. Optimum pervaporation results, a separation factor of 22 and a permeation rate of 270 g/m2 h, were obtained for a 90 wt % feed aqueous ethanol solution through a 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride polyimide membrane at 25°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2046–2052, 2005  相似文献   

19.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

20.
The transport properties of a unique family of silane‐modified poly(vinyl chloride) (PVC) pervaporation membranes for the separation of halogenated hydrocarbons from water were investigated. The PVC was modified by using a vinyl silane to improve its resistance to attack by halogenated hydrocarbons and to increase the flux. Two preparation routes were used: Route i included an initiator to promote the vinyl reaction before the hydrolysis and condensation of the methoxy silane group, whereas Route ni did not. The structures of the membranes were characterized and related to the transport properties, as derived from batch pervaporation experiments. The permeability of unmodified PVC membranes increases with exposure to haloorganics at low concentrations. Initially, the modified membranes exhibited a higher permeability than PVC and a lower selectivity. At long pervaporation times, the silane‐modified membranes exhibited a higher selectivity than PVC. The different preparation routes led to different morphologies, which affected the performance of the membranes; Route ni membranes exhibited higher permeabilities and selectivity than Route i membranes. Rubbery polydimethylsiloxane membranes were resistant to haloorganics but their high water permeability and low selectivity make them unsuitable for this pervaporative separation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1429–1438, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号