共查询到20条相似文献,搜索用时 15 毫秒
1.
The room-temperature mechanical properties of a closed-cell, polyurethane encapsulant foam were measured as a function of foam density. Over the range of densities examined, the modulus could be described by a power-law relationship with respect to density. This power-law relationship was the same for both tension and compression testing. The basis for this power-law relationship is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model put forth by Gibson and Ashby. The elastic collapse stress, a property relevant to compression testing, also is found to exhibit a power-law relationship with respect to density. The density dependence of this property is also found in the work of Gibson and Ashby and is explained in terms of the Euler buckling of the struts that comprise the cellular structure. Energy absorption during deformation is also reported for both tension and compression testing. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1045–1055, 1998 相似文献
2.
Haixia Yuan Weiyi Xing Hongyu Yang Lei Song Yuan Hu Guan Heng Yeoh 《Polymer International》2013,62(2):273-279
Phenolic foam exhibits outstanding flame, smoke and toxicity properties, good insulation properties and low production costs. However, the brittleness and pulverization of phenolic foam have severely limited its application in many fields. In this study, a novel phosphorus‐containing polyurethane prepolymer (DOPU) modifier was firstly synthesized, and then the foaming formula and processing of toughening phenolic foam modified with DOPU and glass fiber were explored. The structure and reactive behavior of prepolymer and phenolic resin were investigated using Fourier transform infrared spectroscopy. The effects of DOPU and glass fiber on the apparent density, compressive strength, bending strength and water absorption were investigated. The results suggested that the apparent density, compressive strength and bending strength of modified phenolic foam tended to increase irregularly with increasing content of DOPU. The addition of DOPU led to lower water absorption of glass fiber‐filled foam. Thermal stability and flame retardancy were examined using thermogravimetric analysis and limiting oxygen index (LOI) tests. It was found that foam with 3% DOPU and 0.5% glass fiber added exhibited good thermal stability and high char yields. The LOI value of modified phenolic foams decreased with increasing DOPU content, but it still remained at 41.0% even if the amount of modifier loaded was 10 wt%. © 2012 Society of Chemical Industry 相似文献
3.
A composite foam, polyurethane–melamine formaldehyde (PU/MF) foam, was prepared through foaming PU resins in the three‐dimensional netlike skeleton of MF foam. The chemical structure, morphology, cell size and distribution, flame retardancy, thermal properties and mechanical properties of such composite foam were systematically investigated. It was found that the PU/MF foam possessed better fire retardancy than pristine PU foam and achieved self‐extinguishment. Moreover, no melt dripping occurred due to the contribution of the carbonized MF skeleton network. In order to further improve the flame retardancy of the composite foam, a small amount of a phosphorus flame retardant (ammonium polyphosphate) and a char‐forming agent (pentaerythritol) were incorporated into the foam, together with the nitrogen‐rich MF, thus constituting an intumescent flame‐retardant (IFR) system. Owing to the IFR system, the flame‐retardant PU/MF foam can generate a large bulk of expanded char acting as an efficient shielding layer to hold back the diffusion of heat and oxygen. As a result, the flame‐retardant PU/MF foam achieved a higher limiting oxygen index of 31.2% and exhibited immediate self‐extinguishment. It exhibited significantly reduced peak heat release rate and total heat release, as well as higher char residual ratio compared to PU foam. Furthermore, the composite foam also showed obviously improved mechanical performance in comparison with PU foam. Overall, the present investigation provided a new approach for fabricating a polymer composite foam with satisfactory flame retardancy and good comprehensive properties. © 2018 Society of Chemical Industry 相似文献
4.
5.
Polyurethane foam was fabricated from polymeric diphenylmethane diisocyanate (pMDI) and soy‐based polyol. Nanoclay Cloisite 30B was incorporated into the foam systems to improve their thermal stabilities and mechanical properties. Neat polyurethane was used as a control. Soy‐based polyurethane foams with 0.5–3 parts per hundred of polyols by weight (php) of nanoclay were prepared. The distribution of nanoclay in the composites was analyzed by X‐ray diffraction (XRD), and the morphology of the composites was analyzed through scanning electron microscopy (SEM). The thermal properties were evaluated through dynamic mechanical thermal analysis (DMTA). Compression and three‐point bending tests were conducted on the composites. The densities of nanoclay soy‐based polyurethane foams were higher than that of the neat soy‐based polyurethane foam. At a loading of 0.5 php nanoclay, the compressive, flexural strength, and modulus of the soy‐based polyurethane foam were increased by 98%, 26%, 22%, and 65%, respectively, as compared to those of the neat soy‐based polyurethane foam. The storage modulus of the soy‐based polyurethane foam was improved by the incorporation of nanoclay. The glass transition temperature of the foam was increased as the nanoclay loading was increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
6.
The focus of this paper was to explore the acoustic properties of flexible polyurethane (FPU) foam modified by palm‐oil‐based polyol (POP). The presence of POP showed a marked influence on the microstructure and mechanical properties of FPU foam. A smaller mean pore diameter can be observed at lower POP content. Indeed, the introduction of POP caused a higher closed pore ratio and an increased air‐flow resistivity, which consequently improved the sound absorption coefficient and transmission loss. In particular, the acoustic performance of the all bio‐based FPU foam was enhanced at low frequency, and the density was lower than that of the reference foam. Additionally, the addition of POP also improved the compressive strength. Conversely, the tensile strength of FPU foam declined with increasing POP content. From this study, the outstanding acoustic ability of bio‐based FPU foam has been proved, with additional advantages of lower density and higher compressive strength. © 2019 Society of Chemical Industry 相似文献
7.
Garnet‐filled polyurethane foam composite was prepared by solvent‐free reaction. Density, hardness, and compression strength were measured to study its basic physical properties. Percent volume loss and arithmetical mean surface roughness were investigated as an abrasion property to determine its potentiality as an abrasive and establish a relationship between basic properties and abrasion properties. These properties were measured as functions of blowing agent content, and garnet was used as filler. The particle size of the garnet and the polyol mixing ratio were also changed to investigate the dependence of properties on formulation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1336–1343, 2001 相似文献
8.
This article presents research findings for selected mechanical properties of polyurethane elastomers. The studied elastomers were synthesized with the prepolymer‐based method with the use of controlled molecular weight distribution (MWD) urethane oligomers and with the classical single‐stage method. Prepolymers with defined MWDs were obtained with the use of a multistage method, that is, step‐by‐step polyaddition. To produce elastomers, isocyanate oligomers were then crosslinked with triethanolamine, whereas hydroxyl oligomers were crosslinked with 4,4′,4′′‐triphenylmethane triisocyanate (Desmodur RE). The tensile strength of the obtained elastomers ranged from 1.0 to 7.0 MPa, the ultimate elongation approached 1700%, the Shore A hardness varied from 40 to 93°, and the abrasion resistance index fell within 15–140. The effects of the types of raw materials used, the chemical structures, the production methods, and the supermolecular structures on the mechanical properties of the obtained polyurethane elastomers were examined. When the obtained findings were generalized, it was concluded that the structural changes in the polyurethanes, which were favorable for intermolecular interactions, improved the tensile strength, hardness, and abrasion resistance of the materials and impaired their ultimate elongation at the same time. More orderly supermolecular structures and, therefore, superior mechanical properties were found for polyurethane elastomers produced with the prepolymer method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
纳米二氧化硅改性硬质聚氨酯泡沫塑料的研究 总被引:2,自引:0,他引:2
采用浇注成型法合成密度为250 mg/cm3的纳米SiO2改性硬质聚氨酯泡沫塑料(PUR-R),研究了纳米SiO2含量及偶联剂处理对纳米SiO2改性PUR-R的各种力学性能的影响。结果表明:直接使用纳米SiO2,可使PUR-R的某些力学性能得到提高,而偶联剂处理可进一步改善纳米SiO2对PUR-R的增强作用,用偶联剂改性过的纳米SiO2增强PUR-R与纯PUR-R相比,除断裂伸长率降低外,其他力学性能如拉伸强度、压缩强度、弯曲强度、冲击强度及弯曲模量等均有所提高。 相似文献
10.
To improve the mechanical and surface properties of poly(etherurethane) (PEU), multi‐walled carbon nanotubes (MWCNTs) were surface grafted by 3,3,4,4, 5,5,6,6,7,7,8,8,8‐tridecafluoro‐1‐octanol (TDFOL) (MWCNT‐TDFOL) and used as reinforcing agent for PEU. Fourier‐transform infrared spectroscopy revealed the successful grafting of MWCNTs. PEU filled with MWCNT‐TDFOL could be well dispersed in tetrahydrofuran solution, and tensile stress–strain results and dynamic mechanical analysis showed a remarkable increase in mechanical properties of PEU by adding a small amount of MWCNT‐TDFOL. Contact angle testing displayed a limited improvement (just 9°) in the hydrophobicity of PEU surface by solution blending with MWCNT‐TDFOL. However, a large improvement of surface hydrophobicity was observed by directly depositing MWCNT‐TDFOL powder on PEU surface, and the water contact angle was increased from 80° to 138°. Our work demonstrated a new way for the modification of carbon nanotubes and for the property improvement of PEU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
The present study investigates the tensile, flexural, notched Izod impact, and water absorption properties of bagasse and beech reinforced polypropylene (PP) composites as a function of fiber content. The surface of fibers was modified through the use of maleated polypropylene (MAPP) coupling agent. From this study, it was found that mechanical properties increase with an increase in fiber loading in both cases. However, the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading was evaluated and found maximum for the BA/PP composites. The weight gains for all specimens were less than 7%. In general, the results showed the usefulness of bagasse fiber as a good alternative and reinforcing agent for composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
12.
Biopitch is a renewable source of polyol obtained from Eucalyptus tar distillation, which was studied as an active component of polyurethane (PU). The polymerization occurred in one step, with a mixture of biopitch and hydroxyl‐terminated polybutadiene polyols reacted with 4‐4′‐diphenyl methane diisocyanate in the presence of dibutyltin dilaurate. Solid‐state 13C‐NMR, IR spectroscopy, elemental analysis, and thermal analysis [thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)] were used to characterize the biopitch. The biopitch sample showed an aromatic and oxygenated structure with great thermal stability at high temperatures. Multiphasic PUs were synthesized and characterized by IR spectroscopy (attenuated total reflectance), elemental analysis, thermal analysis (TGA and DSC), mechanical assays (tensile strength, elongation at break, toughness, hardness, and resilience), and water absorption resistance (ASTM D 570‐81). In a comparative study of the synthesized elastomers, biopitch content increased tensile strength and hardness and decreased thermal stability, elongation at break, and water absorption. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 759–766, 2003 相似文献
13.
With the action of catalyst and cosolvent, a series of hydroxyl‐terminated polydimethylsiloxane (HPMS) based polyurethane (PU) micro‐emulsion were gotten by surfactant‐free copolymerization. They were successfully prepared by reacting isophorone isocyanate, poly(tetramethylene glycol), and HPMS with N‐methyldiethanolamine (MDEA) as chain extender and trimethylolpropane (TMP) as crosslinker. After neutralizing with dimethyl sulfate and inversing the emulsion polymerization with deionized water, a series of microemulsions were obtained. The emulsions were then cast into membranes named as PU–HPMS. The mechanical properties and water absorption of the PU–HPMS were determined and simultaneously the effects of the content of hard segment, solvent, TMP, MDEA, HPMS, and the molecular weight of soft segment were studied. It is noticed that the tensile strength decreased and elongation at break increased in the HPMS/PU when compared with pure PU, which confirm that PU was end‐capped with PDMS. It is also noticed that water absorption increased in the HPMS/PU when compared with pure PU. As HPMS content increased from 0.0 to 25.0 wt %, the surface free energies decreased from 0.3446 to 0.2317 mN/cm and water absorption decreased from 11.2% to 0.14%. The surface free energies of the membranes were decreased by more than 32.76%, which demonstrate that the membrane surfaces have excellent water and oil repellency. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 40–46, 2006 相似文献
14.
Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam 下载免费PDF全文
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734. 相似文献
15.
16.
A novel method for preparing rigid polyurethane (PU) foam/organoclay nanocomposites was developed through the direct incorporation of an organoclay into PU foam matrices without the addition of any physical or chemical blowing agent. The resultant foams with an appropriate content of the organoclay had a finer cell structure than the pristine PU foams because the organoclay not only acted as a nucleating agent as expected but also acted as a blowing agent of the PU foams; this could be attributed to the bound water between the interlayers of the organoclay. In addition, the incorporation of the organoclay up to 4 phr resulted in improvements in the tensile and compressive strengths, with the maximum values appearing at 2 phr (110 and 152%, respectively). The significant improvement in the mechanical properties could be attributed to the finer cell structure and the increased internal strength of the materials due to the higher degree of hydrogen bonding. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
17.
Satoshi Takesono Masayuki Onodera Akira Ito Masanori Yoshida Kazuaki Yamagiwa Akira Ohkawa 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2001,76(4):355-362
The foam‐breaking characteristics of rotating‐disk mechanical foam‐breakers (MFRDs) fitted to stirred‐tank reactors (STRs) containing various foaming liquids were evaluated. The critical disk rotational speed, Nc, required for foam‐breaking and the liquid hold‐up, ?L, in ascending foam reflected, respectively, the foam‐breaking behaviour of MFRDs and the foaming behaviour of STRs. Empirical equations for the prediction of Nc and ?L, which can be applied independently of the type, concentration and temperature of foaming liquid, were obtained. The foam‐breaking power, Pkc, of MFRDs was also clarified in relation to the level of ?L which is related to the difficulty or ease of mechanical foam‐breaking. © 2001 Society of Chemical Industry 相似文献
18.
Yuxi Yu Kunhuang Peng Jiyu Fang Ruiqian Zhang Guanchun Wang Xiaoming Peng 《International Journal of Applied Ceramic Technology》2018,15(5):1138-1145
We report the formation of Al2O3‐SiO2 fiber‐reinforced Al2O3‐SiO2 aerogels with the content of fibers in the range from 40 wt% to 55 wt% by sol‐gel reaction, followed by supercritical drying. The structure and physical properties of fiber‐reinforced Al2O3‐SiO2 aerogels are studied. We find that the fiber‐reinforced Al2O3‐SiO2 aerogels can be resistant to the temperature of 1200°C. The integration of fibers significantly improves the mechanical properties of Al2O3‐SiO2 aerogels. We find that the bending strength of fiber‐reinforced Al2O3‐SiO2 aerogels increases 0.431 MPa to 0.755 MPa and the elastic modulus increases from 0.679 MPa to 1.153 MPa, when the content of fibers increases from 40 wt% to 50 wt%. The thermal conductivity of the fiber‐reinforced Al2O3‐SiO2 aerogels is in the range from 0.0403 W/mK to 0.0545 W/mK, depending on the content of fibers. 相似文献
19.
Shaoxiang Li Yue Zhou Jiaji Cheng Qianyu Ma Feng Zhang Yong Wang Meng Liu Dong Wang Wenjuan Qu 《应用聚合物科学杂志》2020,137(4):48307
Ammonium polyphosphate (APP) is an effective phosphorus-containing flame retardant. But APP also has excellent hygroscopic capacity and decreases the mechanical property of composite. The aim of the study was to microencapsulate APP with polymethyl methacrylate (PMMA) to prepare microencapsulated ammonium polyphosphate (PMAPP) in order to eliminate the harmful effects caused by the mechanical property of composite. The microcapsules are characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and hydroscopicity test and observed by scanning electron microscopy (SEM). Fire hazard of rigid polyurethane foam (RPUF) is evaluated using a cone calorimeter and limited oxygen index test. The mechanical property of RPUF is studied by compressive strength test. The results show that APP has been microencapsulated by PMMA successfully and the shell does not decrease the beneficial effect of APP on fire hazard of RPUF. Furthermore, the shell also reduces the damage of APP on the mechanical property of composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48307. 相似文献
20.
Poly(tetrafluoroethylene) (PTFE) scraps were recovered as a filler material for low‐density polyethylene (LDPE) after they were degraded by Co‐60 γ‐rays under atmospheric conditions to make small‐size powder. The powder PTFE, which was called secondary PTFE (2°‐PTFE), was melt mixed with LDPE and then extruded to obtain 200 µm films. The mechanical and thermal properties and also the morphology of the fractured surface of these 2°‐PTFE–filled LDPE were studied. It was found that the addition of 2°‐PTFE resulted in thermofilm property of LDPE but it slightly decreased the thermal oxidative temperature of LDPE. The tensile strength and ultimate elongation of LDPE were found to decrease with the addition of 2°‐PTFE. However, when it is compared to the addition of virgin PTFE into LDPE, 2°‐PTFE shows better mechanical properties due to the presence of oxy groups which are capable of interacting with the main matrix. A further improvement in mechanical properties was achieved by silane coupling agent treatment of 2°‐PTFE. Silane coupling agents were found to enhance the interfacial adhesion between 2°‐PTFE and LDPE. The study on the fractured surfaces by scanning electron microscope revealed this adhesion between these two polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 866–876, 1999 相似文献