首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   

2.
Electrospinning was used to fabricate mats of poly(vinyl alcohol) (PVA; Mw = 72,000 Da, degree of hydrolysis ≈ 97.5–99.5) nanofibers from PVA solutions in reverse osmotic water. The effects of solution concentration, applied electrical potential, sonication, and collection distance on morphological appearance and diameters of the as‐spun fiber mats as well as those of the individual fibers were carefully investigated mainly by scanning electron microscopy. The effect of the distance from the center of the as‐spun fiber mat on morphological appearance and diameters of the as‐spun fibers was also investigated. The mechanical integrity of some as‐spun PVA fiber mats was also investigated. At all concentrations and applied electrical potentials investigated, the average diameters of the as‐spun PVA fibers ranged between 85 and 647 nm. The use of sonication to prepare a PVA solution caused the viscosity of the solution to decrease; hence, the observed decrease in the average diameters of the as‐spun fibers and the average diameters of the as‐spun fibers were practically the same throughout the as‐spun fiber mat. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Nickel is a cheaper metallic material compared to palladium membranes for H2 separation. In this work, metallic Ni hollow fiber membranes were fabricated by a combined phase inversion and atmospheric sintering method. The morphology and membrane thickness of the hollow fibers was tuned by varying the spinning parameters like bore liquid flow rate and air gap distance. H2 permeation through the Ni hollow fibers with N2 as the sweep gas was measured under various operating conditions. A rigorous model considering temperature profiles was developed to fit the experimental data. The results show that the hydrogen permeation flux can be well described by using the Sieverts’ equation, implying that the membrane bulk diffusion is still the rate‐limiting step. The hydrogen separation rate in the Ni hollow fiber module can be improved by 4–8% when switching the co‐current flow to the countercurrent flow operation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3026–3034, 2017  相似文献   

4.
For the purpose of separating aqueous alcohol by the use of pervaporation technique, a composite membrane of chitosan (CT) dip‐coated cellulose acetate (CA) hollow‐fiber membranes, CT‐d‐CA, was investigated. The effects of air‐gap distance in the spinning of CA hollow‐fiber membranes, chitosan concentration, and sorts of aqueous alcohol solutions on the pervaporation performances were studied. Compared with unmodified CA hollow‐fiber membrane, the CT‐d‐CA composite hollow‐fiber membrane effectively increases the permselectivity of water. The thickness of coating layer increases with an increase in chitosan concentration. As the concentration of chitosan solution increased, the permeation rate decreased and the concentration of water in the permeate increased. In addition, the effects of feed composition and feed solution temperature on the pervaporation performances were also investigated. The permeation rate and water content in permeate at 25°C for a 90 wt % aqueous isopropanol solution through the CT‐d‐CA composite hollow‐fiber membrane with a 5‐cm air‐gap distance spun, 2 wt % chitosan dip‐coated system were 169.5 g/m2 h and 98.9 wt %, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1562–1568, 2004  相似文献   

5.
利用双弧狭缝孔形喷丝板,采用干喷湿法纺丝工艺,研究了PAN纺丝液在40~70℃喷丝温度范围内,对中空初生纤维成形与性能的影响。结果表明:喷丝温度对纤维截面的成形、外皮层厚度、异形度、中空度、声速取向等均会产生影响。随喷丝温度的增加,初生纤维外皮层厚度减小,纤维内外沿异形度逐渐降低且差距逐渐增加,中空度与声速取向在低温段降低幅度较大,而在高温段降幅减缓。  相似文献   

6.
A systematic study of the air gap effects on both the internal and the external morphology, permeability and separation performance of polyvinylidene fluoride (PVDF) hollow fiber membranes has been carried out. The hollow fibers were prepared using the dry-jet wet spinning process using a dope solution containing PVDF/ethylene glycol/N, N-dimethylacetamide with a weight ratio of 23/4/73. Ethanol aqueous solution, 50% by volume, was used as internal and external coagulants. The inner and the outer surfaces of the prepared hollow fibers were analyzed by atomic force microscopy (AFM), while their cross-sectional structure was studied by scanning electron microscopy (SEM). Ultrafiltration experiments were conducted using non-ionic solutes of different molecular weights. The results show that both the pore sizes and nodule sizes have a log-normal distribution. The pore size, nodule size and roughness parameters of the inner and outer surfaces of the hollow fibers were affected by the air gap distance. Alignment of nodules to the spinning direction was observed. Experimental results indicate that an increase in air gap distance, from 1 to , results in a hollow fiber with a lower permeation flux and a higher solute separation performance due to the decrease of the pore size. AFM analysis reveals that the air gap introduces an elongational stress because of gravity on the internal or external surfaces of the PVDF hollow fibers. At low air gap distance, the inner surface controls the ultrafiltration performance of the PVDF hollow fiber membranes because of its lower pore size, while at high air gap lengths the inner pore size becomes larger than the outer pore size. The turning point was observed at an air gap distance of .  相似文献   

7.
By using 30/70 polyethersulfone/NMP (N-methyl-2-pyrrolidone) solutions as an example, we have determined the role of air-gap distance on nascent fiber morphology, performance, and thermal properties. An increase in air-gap distance results in a hollow fiber with a less layer of fingerlike voids and a significant lower permeance. For the first time we have reported that the Tg of a dry-jet wet-spun fiber prepared from one-polymer/one-solvent systems is lower than that of a wet-spun fiber, and Tg decreases with an increase in air-gap distance. These interesting phenomena arise from the fact that different precipitation paths take place during the wet-spinning and dry-jet wet-spinning processes. Wet-spun fibers experience vigorous and almost instantaneous coagulations; it results in hollow fiber skins with a long-range random, unoriented chain entanglement, but loose structure. Dry-jet wet-spun fibers first go through a moisture-induced phase separation process and then a wet-phase inversion process; it results in external fiber skins with a short-range random, compact, and slightly oriented or stretched structure. As a result, the outskin of wet-spun fibers have a greater free volume and a higher first Tg than that of the dry-jet wet-spun ones. Both SEM (scanning electronic microscope) photomicrographs and DSC (differential scanning calorimeter) analyses support our conclusion. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1067–1077, 1997  相似文献   

8.
We have developed defect‐free asymmetric hexafluoro propane diandydride (6FDA) durene polyimide (6FDA‐durene) hollow fibers with a selectivity of 4.2 for O2/N2 and a permeance of 33.1 ×10?6 cm3 (STP)/cm2‐s‐cmHg for O2. These fibers were spun from a high viscosity in situ imidization dope consisting of 14.7% 6FDA‐durene in a NMP solvent and the inherent viscosities (IV) of this 6FDA‐durene polymer was 0.84 dL/g. Low IV dopes cannot produce defect‐free hollow fibers, indicating a 6FDA‐durene spinning dope with a viscosity in the region of chain entanglement seems to be essential to yield hollow fibers with minimum defects. The effects of spinning parameters such as shear rates within a spinneret and bore fluids as well as air gap on gas separation performance were investigated. Experimental data demonstrate that hollow fibers spun with NMP/H2O as the bore liquid have higher permeances and selectivities than those spun with glycerol as the bore liquid because the former has a relatively looser inner skin structure than the latter. In addition, the selectivity of hollow fibers spun with NMP/H2O as the bore liquid changes moderately with shear rate, while the selectivity of hollow fibers spun with glycerol are less sensitive to the change of shear rate. These distinct behaviors are mainly attributed to the different morphologies generated by different bore fluids. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2166–2173, 2001  相似文献   

9.
In this paper, the development of diameter and surface temperature of Lyocell fibers was measured online. The diameter and tensile force on the spin line in the coagulation bath were traced. The velocity, velocity gradient and the tensile stress profiles development of the fibers in the air gap were studied. The apparent elongational viscosity of cellulose N‐methylmorpholine‐N‐oxide monohydrate (NMMO‐MH) solutions was studied by steady‐state melt spinning theory. The decrease of the fiber diameter was mainly taking place near the spinneret, and the decrease of the diameter became more dramatic with increasing taking‐up speed. The surface temperature of the fibers was also dropping faster with increasing taking‐up speed for the heat transfer coefficient increased. The diameter of the Lyocell fibers almost did not change before and after it entered the coagulation bath. The tensile force on the spin line increases with increasing taking‐up speed and coagulation bath length. The velocity and the tensile stress increase slowly near the spinneret, and then accelerate. The apparent elongational viscosity of cellulose NMMO‐MH solutions decreases with increasing temperature at the same elongation rate and decreases with increasing elongation rate at the same temperature. The fiber of the Lyocell process was not really solidified in the air gap and a gel or rubbery state was formed.  相似文献   

10.
In this study, polysulfone (PSF) hollow fiber membranes with enhanced performance for humic acid removal were prepared from a dope solution containing PSF/DMAc/PVP/TiO2. The main reason for adding titanium oxide during dope solution preparation was to enhance the antifouling properties of membranes prepared. In the spinning process, air gap distance was varied in order to produce different properties of the hollow fiber membranes. Characterizations were conducted to determine membrane properties such as pure water flux, molecular weight cut off (MWCO), humic acid (HA) rejection and resistance to fouling tendency. The results indicated that the pure water flux and MWCO of membranes increased with an increase in air gap distance while HA retention decreased significantly with increasing air gap. Due to this, it is found that the PSF/TiO2 membrane spun at zero air gap was the best amongst the membranes produced and demonstrated > 90% HA rejection. Analytical results from FESEM and AFM also provided supporting evidence to the experimental results obtained. Based on the anti-fouling performance investigation, it was found that membranes with the addition of TiO2 were excellent in mitigating fouling particularly in reducing the fouling resistances due to concentration polarization, cake layer formation and absorption.  相似文献   

11.
In the steady fabricating process, two‐dimensional hollow fiber membrane near the spinneret was numerically simulated using the finite element method (FEM). The unknown positions of free surface and moving interface were calculated simultaneously by the velocity and pressure fields. The effects of seven relevant parameters, i.e., inertia term, gravity term, dope flow rate, bore flow rate, dope viscosity, tensile force, end velocity and non‐Newtonian on the velocity and diameter profile were studied. On the basis of the simulated results, the inertia term in hollow fiber‐spinning process was safely neglected in low speed, while the effect of gravity was not be neglected. Besides, the outer diameter of the fibers increased with an increase of dope flow rate and bore flow rate; Large tensile force or large end velocity could cause large deformation in the air gap; larger viscous dope solution tended to make less deformation in the air gap. It was found that an increase of the dope flow rate at small dope flow rate resulted in an increase of the inner diameter, while at large dope flow rate, it decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2067–2074, 2006  相似文献   

12.
Microporous polyethylene (PE) hollow fiber membrane with a porosity of 43% and N2 permeation of 4.96 cm3 (STP)/cm2 s cmHg was prepared by melt‐spinning and cold‐stretching method. It was found that PE with a density higher than 0.96 g/cm3 should be used for the preparation of microporous PE hollow fiber membranes. By increasing the spin–draw ratio, both the porosity and the N2 permeation of the hollow fiber membranes increased. Annealing the nascent hollow fiber at 115°C for 2 h was suitable for attaining membranes with good performance. By straining the hollow fiber to higher extensions, the amount and size of the micropores in the hollow fiber wall increased, and the N2 permeation of the membranes increased accordingly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 203–210, 2002; DOI 10.1002/app.10305  相似文献   

13.
《分离科学与技术》2012,47(8):1737-1752
Abstract

Removal of volatile organic compounds (VOCs) such as 1,2-dichloroethane, trichloroethylene, chlorobenzene and toluene from water solutions through polyetherimide (PEI)-polyethersulfone (PES) blend hollow fiber membranes was investigated by pervaporation (PV) in this work. The separation performances of the membranes were researched by varying the spinning conditions (such as coagulation temperature and air gap distance) for the preparation of the hollow fibers and the operation conditions (such as velocity, concentration, and temperature of feed liquids). For the PEI-PES blend hollow fiber membrane prepared when the air gap was 7 cm and the temperature of coagulation bath was 45°C, it possessed high selectivity to the aqueous solutions containing 0.04 wt.% of VOCs at 20°C. The separation factors to 1,2-dichloroethane, trichloroethylene, chlorobenzene and toluene were 7069, 5759, 3952, and 3205, respectively. It was found that the pervaporation performance of the blend hollow fiber membrane was strongly related to the molecular size of the VOCs. The order of the selectivities was 1,2-dichloroethane > trichloroethylene > chlorobenzene > toluene.  相似文献   

14.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

15.
This article describes preparation of temperature‐sensitive poly(vinylidene fluoride) hollow fiber membranes using the dry‐wet spinning technique and investigates effects of air gap length on the structures and performances. In spinning these hollow fibers, N,N‐dimethyl formamide and poly(ethylene glycol) (10,000) were used as the solvent and pore‐forming agent, respectively. The prepared fiber membranes were characterized by scanning electron microscopy, pore size measurement, filtration experiments of pure water flux, and solutes with different molecular weights. The fiber membranes exhibit a quite asymmetric structures consisting of double skin layers situated on the fiber walls, two finger‐like layers near skin layers as well as macrovoids and sponge‐like structures at the center of the fiber cross‐sections. Remarkable changes of pure water flux and retention of solute are observed around 32°C, indicating an excellent temperature‐sensitive permeability. As the air gap length increases, the pore size of fiber membrane decreases, which results in decrease of pure water flux and allows small molecules to permeate through the fiber membrane. POLYM. ENG. SCI., 53:2519–2526, 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
A multichannel mixed‐conducting hollow fiber (MMCHF) membrane, 0.5 wt % Nb2O5‐doped SrCo0.8 Fe0.2O3‐δ (SCFNb), has been successfully prepared by phase inversion and sintering technique. The crystalline structure, morphology, sintering behavior, breaking load, and oxygen permeability of the MMCHF membrane were studied systematically. The MMCHF membrane with porous‐dense asymmetrical microstructure was obtained with the outer diameter of 2.46 mm and inner tetra‐bore diameter of 0.80 mm. The breaking load of the MMCHF membrane was 3–6 times that of conventional single‐channel mixed‐conducting hollow fiber membrane. The MMCHF membrane showed a high oxygen flux which was about two times that of symmetric capillary membrane at similar conditions as well as a good long‐term stability under low oxygen partial pressure atmosphere. This work proposed a new configuration for the mixed‐conducting membranes, combining advantages of multichannel tubular membrane technology and conventional hollow fibers. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1969–1976, 2014  相似文献   

17.
Dual‐layer hollow fiber membranes were produced from blends of Ultem and polymer of intrinsic microporosity (PIM‐1) with enhanced gas permeance. The effects of spinning parameters (take‐up speed and air gap distance) on gas separation performance were investigated based on the pristine Ultem. Selected spinning conditions were further adopted for the blend system, achieving defect‐free and almost defect‐free hollow fibers. Adding PIM results in a higher fractional free volume, 50% increments in gas permeance were observed for Ultem/PIM‐1 (95/5) and more than 100% increments for Ultem/PIM‐1 (85/15). Both O2/N2 and CO2/CH4 selectivities remained the same for Ultem/PIM‐1 (95/5) and above 80% of their respective intrinsic values for Ultem/PIM‐1 (85/15). The selective layer thickness ranges from 70 to 120 nm, indicating the successful formation of ultrathin dense layers. Moreover, minimum amounts of the expensive material were consumed, that is, 0.88, 1.7, and 2.3 wt % PIM‐1 for Ultem/PIM‐1 (95/5), (90/10), and (85/15), respectively. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3848–3858, 2014  相似文献   

18.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

19.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

20.
The oxygen permeation of dense U‐shaped perovskite hollow‐fiber membranes based on Ba0.5Sr0.5Co0.8Fe0.2O3?δ prepared by a phase inversion spinning process is reported. The perovskite hollow fibers with totally dense wall were obtained with the outer diameter of 1.147 mm and the inner diameter of 0.691 mm. The dependences of the oxygen permeation on the air flow rate on the shell side, the helium flow rate on the core side, the oxygen partial pressures, and the operating temperatures were experimentally investigated. According to the Wagner theory, it follows that the oxygen transport through the U‐shaped hollow‐fiber membrane is controlled by both surface reaction and bulk diffusion at the temperature ranges of 750–950°C. High oxygen permeation flux of 3.0 ml/(min cm2) was kept for about 250 h at 950°C under the conditions of the air feed flow rate of 150 ml/min and the helium flow rate of 50 ml/min. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号