首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Micro-thermal analysis (micro-TA) is a new subsurface thermal analysis technology. The average of the DC signal is a function of the thermal conductivity, and the response to the AC modulation signal is a function of the thermal diffusivity of the subsurface. Using this technique, three images based on topography, thermal conductivity, and thermal diffusivity are obtained simultaneously. Specific areas and domains in these images can then be characterized by simply positioning the probe and performing a localized thermal analysis experiment. The technique has been used to study the phase separation process in a 50:50 (by weight) polystyrene (PS)–poly(vinyl methyl ether) (PVME) blend and natural rubber–nitrile rubber blends. For these polymer blends, considerable contrast between phases is obtained, based on thermal conductivity, whereas optical and electron microscopy would show them as being very similar. For example, it is difficult to image the morphology of natural and nitrile rubber blends by means of transmission electron microscopy, because of their similar chemical structures. Micro-TA gives an excellent image of the morphology of these natural–nitrile rubber blends. This opens a new way for rubber industries to study morphologies of rubber–rubber blends in general. In the 50:50 PS–PVME blend, annealed at 125°C, spinodal decomposition occurred. With increasing time, the domain size and the glass transition temperature of PS-rich domains increased, indicating that the concentration of PVME in the PS-rich phases decreases. The results imply that micro-TA can be used to image the composition in the near-surface or surface regions in multicomponent materials, if the resolution is high enough. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2136–2141, 2001  相似文献   

2.
Abstract

During the vulcanisation process, rubber compounds are heated to temperatures of ~200°C and then cooled. An increase in temperature occurs in rubber tyres during use as a result of heat produced by repeated deformation. This temperature increase can be so high that it can cause tyre destruction. From this point of view, knowledge of thermal diffusivity data of rubber compounds and reinforced rubber is very important. Despite thermal diffusivity being a crucial value, which determines the rate of heating or cooling of solid bodies, only limited data of this kind are available in the literature for elastomers. A new method, developed especially for determining the thermal diffusivity of thick fibre composite materials and reinforced rubber, has been used to measure the thermal diffusivity of rubber compounds. Both the content and the type of rubber and carbon black determine the thermal diffusivity. The content of other components, however, has a very limited influence on this parameter.  相似文献   

3.
The thermal diffusivity of several natural and synthetic rubber compounds was measured in the temperature range from 125 to 350 K with an automatic device. In every case, a step change has been found in the thermal diffusivity at the glass transition range. In partially crystalline elastomers, the thermal diffusivity shows a minimum, which agrees very well with the melting temperature of crystallites. Also, new estimations of thermal diffusivity of some elastomeric compounds are given at above and below the glass transition temperature. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
Heat transfer properties play an important role in processing of polyetherketoneketone (PEKK)/carbon fiber (CF) composites. Accordingly, thermal conductivity and diffusivity of PEKK, PEKK/glassy carbon (GC), and PEKK/CF composites have been studied. Observed increase in conductivity and diffusivity with carbon filler addition was analyzed using the Maxwell–Eucken model. PEKK/GC composites with low carbon fraction indicated good fitting experimental points of the model, indicating good dispersion of particles. For PEKK/CF composites, the thermal conductivity and diffusivity increase is a reflection of a decrease in porosity. Results as observed from the model points to a homogenous dispersion within the PEKK/CF composites as well. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47975.  相似文献   

5.
Polymer‐clay nanocomposites are well‐known high‐performance materials with a superior tensile modulus. However, in the case of composites with polyimide (PI), additional functions require study because PI is a high‐performance material in itself. Significant enhancement of thermal conductivity, which is closely related to the state of clay dispersion, is expected for a polymer‐clay nanocomposite. In this study, variations in the thermal diffusivity of PI‐clay nanocomposite films prepared by different methods were investigated. The thermal diffusivity of PI‐clay nanocomposite film increased at low clay content only when unmodified clay was used, where the clay morphology was a layered structure dispersed on a nanometer scale. Moreover, the thermal diffusivity could be enhanced by controlling the tensile stress induced by spontaneous shrinkage of the film during thermal imidization. These results demonstrated that the thermal diffusivity of PI‐clay nanocomposite films is significantly affected by the dispersion and/or arrangement states of the clay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The effect of FEF carbon black as filler on the thermal capacity c, diffusivity a, and thermal conductivity λ, of styrene butadiene rubber (SBR) composites in the temperature range 300–420 K was studied. The filler strongly increases the thermal diffusivity, whilst strongly decreasing the thermal capacity and the thermal conductivity (except at high FEF content ≥80 phr). The influence of the filler on the thermoelastic behaviour of the same composites was also investigated. It was found that the thermoelastic temperature change (ΔT) increased with carbon black concentration as well as the entropy change per unit extension.  相似文献   

7.
Transient plane source technique was used for the simultaneous measurement of thermal conductivity and thermal diffisivity of three‐phase styrene butadiene rubber composites. Two series of styrene butadiene rubber composites were studied, having natural rubber as a variable filler in both the composites along with 10 phr of silica and clay, respectively. The measurements were done at room temperature and normal pressure. The experimental results show that there is a small variation in the thermal conductivity of both the composites with the filler (NR) fraction. It is interesting to note that the thermal conductivity shows a sharp decrease at 10 phr filler loading and then increases. The comparative study of these composites shows that the conductivity as well as the diffusivity of the silica reinforced composites is larger than that of the clay composites. The thermal conductivity of the filler NR has been evaluated using the Agari model. It has also been found that the composite with 40 phr of NR has the maximum thermal conductivity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1799–1803, 2000  相似文献   

8.
The incorporation of fillers into elastomers has profound effects on the mechanical, physical, and thermal properties of the nanocomposites that form. In this study, styrene–butadiene rubber as a matrix was reinforced separately with 10‐, 15‐, or 23‐nm CaSO4, which was synthesized by an in situ deposition technique. The mixing and compounding were performed on a two‐roll mill, and sheets were prepared in a compression‐molding machine. Properties such as the swelling index, specific gravity, tensile strength, elongation at break, modulus at 300% elongation, Young's modulus, hardness, and abrasion resistance were measured. The morphology of the rubber nanocomposites was also performed with scanning electron microscopy to study the dispersion of the nanofiller in the rubber matrix. The thermal decomposition of the rubber nanocomposites was studied with thermogravimetric analysis, and the results were compared with those of commercial CaSO4‐filled styrene–butadiene rubber. A reduction in the nanosizes of CaSO4 led to an enhancement of the mechanical, physical, and thermal properties of the rubber nanocomposites. Above a 10 wt % filler loading, the styrene–butadiene rubber showed a reduction in all properties. This effect was observed because of the agglomeration of the nanoparticles in the rubber matrix. The thermodynamic parameters were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2018–2026, 2007  相似文献   

9.
Thermal conductivity and diffusivity of carboxyl‐terminated copolymer of polybutadiene and acrylonitrile (CTBN) and hydroxyl‐terminated polybutadiene (HTPB) liquid rubber‐ modified epoxy blends were investigated. A good agreement was observed between the calculated values of the specific heat estimated from thermal conductivity, diffusivity, and density measurements and the DSC results. Measurements of the thermal conductivity values of HTPB/Epoxy blends were in good agreement with three simple theoretical models, which have been used thereafter for the estimation of the unknown value of the thermal conductivity of CTBN (kCTBN = 0.24 Wm?1K?1). The morphology of the rubber‐modified epoxy blends has been quantified and indicate a tendency towards co‐continuous phase upon the inclusion of higher weight percentage of rubber (≥30 wt %). Moreover, we notice a significant enhancement of the thermal conductivity during this morphological shift. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A similarity solution is presented to study the influence of lateral mass flux and thermal dispersion on non-Darcy natural convection over a vertical fiat plate with an exponential type of internal heat generation in a fluid saturated porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The suction/injection velocity distribution has been assumed to have power function form Axλ , where x is the distance from the leading edge and the wall temperature distribution is assumed to be uniform.  相似文献   

11.
The effects of pH value of reaction system, reaction time, and reaction temperature on the chlorination reaction in the preparation of chlorinated natural rubber (CNR) from natural rubber latex were discussed. It has been found from the thermal analysis that the thermal degradation of CNR in nitrogen is a one-step reaction, and 30% carbonide with a stable structure remained at 360 to 700°C; whereas the thermo-oxidative degradation of CNR in air is a multistep reaction, and the thermal degradation ratio reaches to 100% at 560°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2863–2867, 1999  相似文献   

12.
A similarity solution is presented to study the influence of lateral mass flux and thermal dispersion on non-Darcy natural convection over a vertical fiat plate with an exponential type of internal heat generation in a fluid saturated porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The suction/injection velocity distribution has been assumed to have power function form Axλ, where x is the distance from the leading edge and the wall temperature distribution is assumed to be uniform.  相似文献   

13.
The effect of the vulcanizing system on the mechanical properties of butyl rubber/ethylene propylene diene monomer–general purpose furnace black–(GPF) blends was studied with static and dynamic mechanical measurements for these blends. The classical theory of elasticity was applied to show the mechanical behavior of the rubber–polymer blend and to calculate the degree of crosslinking. From the dynamic mechanical measurements, the elastic modulus, internal friction, and thermal diffusivity were calculated. The observed variations were explained in view of the role played by both the vulcanizing system and the reinforcing carbon black. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1539–1544, 2003  相似文献   

14.
Among different methods for preparation of rubber–clay nanocomposites, melt intercalation and latex‐coagulation methods are more practiced. In this study, dispersion of pristine nanoclay by the latex‐coagulation method and organically modified nanoclay by the melt‐intercalation method in styrene butadiene rubber were compared, based on the same amount of mineral clay in the composites. Dispersion of nanoclay was examined by X‐ray diffraction before and after vulcanization, and by atomic force microscopy after vulcanization. It was shown that final structure of nanoclay in the composites was intercalated by both methods, with better dispersion resulting from coagulation of latex over mixing in the melt state. Dynamic–mechanical–thermal analysis and tension tests were used to further assess dispersion and polymer–filler interactions. These tests confirmed better dispersion and larger interfacial area for pristine nanoclay in the latex‐coagulated rubber through observing lower peak loss factor, higher growth of stress in stretching, and lower elongation at break when compared with those for the nanocomposite prepared by the melt mixing. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The thermal properties (thermal conductivity, thermal diffusivity, and specific heat capacity) of nitrile rubber (NBR)/poly(vinyl chloride) (PVC) blends were measured in the temperature range of 300–425 K. The incorporation of graphite into the NBR/PVC (30/70) matrix improved its thermal properties. Moreover, these properties slightly changed with the temperature. The thermal conductivity values of the prepared samples were compared with values modeled according to the Maxwell–Eucken, Cheng–Vachon, Lewis–Nielsen, geometric mean, and Agari–Uno models. The Agari–Uno model best predicted the effective thermal conductivity for the whole range of blend ratios and for the whole range of graphite contents in NBR/PVC (30/70)/graphite composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Development of structure–properties relationships between the fillers/rubber matrix interface chemistry and the dispersion and interfacial adhesion properties of the rubber composites is critical to predict their bulk mechanical and tribological properties. In this paper, three solution styrene butadiene rubber (SSBR) composites containing various fillers with tailored interfacial chemistry were prepared via conventional mixing technique. Subsequently, thermal and structural features of filled SSBR composites were monitored by TG, DSC, XRD, XPS, FESEM and TEM, respectively. Sliding contact experiments were conducted to study tribological properties of styrene butadiene rubber composites under dry and wet conditions. It was shown that the SSBR filled with silicon dioxide nanoparticles significantly reduced both the friction coefficient and the wear against marble block. On the contrary, it exhibited an increased friction coefficient and wear under wet friction conditions due to the specific superior wet‐skid resistance of silicon dioxide nanopartilce filled rubber composites, a good dispersion of silicon dioxide nanopartilce in the rubber matrix and strong interfacial adhesion between nanoparticles and rubber matrix. In addition, the influence of fillers dispersion and interfacial adhesion on friction and wear of styrene butadiene rubber composites was evaluated employing theoretical calculation, and the predicted results were in agreement with the experimental observations. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43589.  相似文献   

17.
橡胶热传导性能的测定   总被引:5,自引:0,他引:5  
介绍橡胶热传导性能测定的基本原理及导热系数,热扩散系数和比热容的测量方法。  相似文献   

18.
《Ceramics International》2020,46(8):11622-11630
In the last decades, the production of ultra-high temperature composites with improved thermo-mechanical properties has attracted much attention. This study focuses on the effect of graphite nano-flakes addition on the microstructure, densification, and thermal characteristics of TiB2–25 vol% SiC composite. The samples were manufactured through spark plasma sintering process under the sintering conditions of 1800 °C/7 min/40 MPa. Scanning electron microscopy images demonstrated a homogenous dispersion of graphite flakes within the TiB2–SiC composite causing a betterment in the densification process. The thermal diffusivity of the specimens was gained via the laser flash technique. The addition of graphite nano-flakes as a dopant in TiB2–SiC did not change the thermal diffusivity. Consequently, the remarkable thermal conductivity of TiB2–SiC remained intact. It seems that the finer grains and more interfaces obstruct the heat flow in TiB2–SiC–graphite composites. Adding a small amount of graphite nano-flakes enhances the densification of the mentioned composite by preventing the grain growth.  相似文献   

19.
Blends of a poly(styrene-co-acrylonitrile) (SAN) with poly(ethene-co-1-octene) rubber (EOR) were investigated. An improved toughness–stiffness balance was obtained when adding as a compatibilizer a blend consisting of oxazoline-functionalized EOR, prepared by grafting EOR with oxazoline-functional maleinate, and poly(styrene-co-maleic anhydride) (SMA), which is miscible with SAN. Enhanced interfacial adhesion was evidenced by the improved dispersion of the EOR in the SAN matrix and the reduced glass transition temperature of the dispersed EOR phase. Morphology studies using transmission electron microscopy revealed formation of an interphase between the matrix and the rubber particles. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1685–1695, 1999  相似文献   

20.
The kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black was investigated by thermogravimetric analysis in a flowing nitrogen atmosphere at a heating rate of 5°C/min. The rate parameters were evaluated by the method of Freeman–Carroll. The results show that the thermal degradation of conductive silicone rubber begins at about 350°C and ends at about 600°C. The thermal degradation is multistage, in which zero‐order reactions are principal. The kinetics of the thermal degradation of conductive silicone rubber has relevance to its loading of conductive carbon black. The activation energies are temperature‐sensitive and their sensitivity to temperature becomes weak as temperature increases. In addition, the conductive silicone rubber filled with conductive carbon black has better thermal stability than that of silicone rubber without any fillers. Also, conductive silicone rubber filled with conductive carbon black has better thermal stability than that of silicone rubber filled with the same amount of silica. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1548–1554, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号