首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sample of poly(vinyl chloride) (PVC) and a polar plasticizer consisting of dioctylphthalate (DOP) and triisopropylphenylphosphate (TIPPP) was prepared and found to possess some electrical conductivity. Different samples of PVC compositions were formulated from the PVC-DOP-TIPPP system and also variable proportions of the conductive materials polyaniline or the Ni salt of ethylene glycol bisadipate ester. Dibutyltindilaurate as a heat stabilizer, titanium oxide as a filler, and sandorin red 20 pigment were added. The effect of the structure of polyaniline and Ni adipate ester on the electrical and mechanical properties of the PVC–DOP–TIPPP system was studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 685–693, 1998  相似文献   

2.
Several fire-resistant formulations were prepared from a sample of poly(vinyl chloride) (PVC), small variable proportions of chloroorganic adducts [1,2,3,4,7,7-hexachloro-5-carboxy,bicyclo(2,2,1)heptene-2] or [1,2,3,4,7,7-hexachloro-5-carboxy,5-methyl-bicyclo(2,2,1)heptene-2] as fire-retarding modifiers, plasticizers (dibutylphthalate and a chlorinated paraffin), and a heat stabilizer (dibutyltindilaurate). The fire-resistance and electrical properties of the obtained formulations were studied to obtain a fire-retarding plasticized PVC of good electrical insulation character. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 27–35, 1997  相似文献   

3.
Different samples of poly(vinyl chloride) (PVC) compositions were formulated from PVC, a polar plasticizer such as dioctylphthalate (DOP), and variable proportions of electrically conductive additives such as fast extrusion furnace (FEF) carbon black (CB), poly(vinylpyridine) (PVP), or polyacrylonitrile (PAN). Epoxidized soybean oil was added as a heat stabilizer. Samples of the PVC–CB system were also prepared by dispersing different concentrations of CB into the PVC matrix. The electrical studies showed that the addition of CB to the PVC–DOP system produces a plasticized PVC with high electrical conductivity whereas the compounding of PVC with CB produces a sample with much higher electrical conductivity. The effect of the structure of PVP and PAN on the electrical and mechanical properties of the PVC–DOP system was also studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1590–1598, 2004  相似文献   

4.
Plerospheres, defined here as superfine spherical particles (0.5–5 μm) separated from fly ash (rather than as other solid spherical particles, as some have used the term), are separated from coal fly ash but are dramatically different from it. Plerospheres can be used as polymer fillers to improve the properties of composites. With plerospheres used as fillers for polypropylene (PP) and unplasticized poly(vinyl chloride) (UPVC), the effects of the filler content, the particle sizes of the plerospheres, and the coupling agent on the composite properties were studied. The particle sizes of the plerospheres were 2 and 5 μm. The results suggested that the notched impact properties both at a normal temperature and a low temperature and the tensile and flexural properties of plerosphere/PP increased significantly when the content was increased from 0 to 30 wt % and further increased with the addition of a coupling agent. Differential scanning calorimetry indicated that the thermal properties of the plerosphere/PP composite improved. The surface characteristics and morphology of the impact fracture surface were examined in detail with scanning electron microscopy. The rheological performance of plerosphere/UPVC pipe composites obviously improved; the plasticizing time was shortened, and the maximum torque was reduced. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 126–131, 2004  相似文献   

5.
The UV irradiation aging behaviors of PVC composites with several inorganic fillers were studied through Fourier transform spectroscopy (FTIR), ultraviolet spectroscopy (UV‐Vis), differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and mechanical property test. It was found that incorporation of a small amount of the inorganic fillers such as CaCO3, talc and SiO2 could hold up the UV aging behaviors of PVC. Those filler‐filled PVC composites sheets after 20 days UV irradiation maintain lower carbonyl index (CI) and good appearance of surfaces, as compared with the corresponding neat PVC sheets, ascribed to high reflection of those fillers to UV light. While montmorillonite (MMT) and pyrophyllite fillers could accelerate the UV aging behaviors of PVC, which could be concluded from both the sharp increase of the CI and lower Tg due to the chain scission reactions because of their high absorbance of these fillers to UV light in 290–400 nm. In these two PVC composites, UV irradiation caused the deterioration of their mechanical properties and the appearance of rough, cracked and chalked surfaces after 20 days UV irradiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

7.
Blends were prepared of poly(vinyl chloride) (PVC) with four different plasticizers; esters of aconitic, citric, and phthalic acids; and other ingredients used in commercial flexible PVC products. The thermal and mechanical properties of the fresh products and of the products after 6 months of aging were measured. Young's modulus of the PVC blends was reduced about 10‐fold by an increase in the plasticizer level from 15 to 30 phr from the semirigid to the flexible range according to the ASTM classification, but a 40‐phr level was required for PVC to retain its flexibility beyond 6 months. At the 40‐phr level, tributyl aconitate performed better than diisononyl phthalate (DINP) or tributyl citrate, in terms of lowering Young's modulus, both in the fresh materials and those aged for 6 months. The effects of the four plasticizers on the glass‐transition temperature (Tg) were similar, with Tg close to ambient temperature at the 30‐ and 40‐phr levels in freshly prepared samples and at 40–60°C in those aged for 6 months. The thermal stability of the PVC plasticized with DINP was superior among the group. Overall, tributyl aconitate appeared to be a good candidate for use in consumer products where the alleged toxicity of DINP may be an issue. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1366–1373, 2006  相似文献   

8.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The optimum conditions for crosslinking rigid poly(vinyl chloride) with trimethylolpropane trimethacrylate (TMPTMA) and peroxide have been examined. The extent of crosslinking was measured by determining gel content by Soxhlet extraction in tetrahydrofuran. Mechanical properties were measured at 130°C and dynamic viscoelastic measurements were carried out to detect changes in the glass transition temperature (Tg). It was found that 15 phr of TMPTMA and 0.3 phr of peroxide were optimum concentrations for maximizing the extent of crosslinking, tensile strength, and Tg. The lower molding temperature of 170°C was preferred to minimize thermal degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2904–2909, 2007  相似文献   

10.
A series of triglyceride plasticizers were prepared from glycerol, acetic acid, and benzoic acid through a two‐step reaction to develop potential uses of glycerol. The optimum reaction conditions were determined by the esterification of glycerol and acetic acid to produce glyceryl triacetate. When the molar ratio of glycerol to benzoic acid to acetic acid was 1:1:3.5, a novel plasticizer triglyceride mixture (GTM) was successfully synthesized; it had a good plasticizing effect on poly(vinyl chloride) (PVC). The elongation at break of PVC composites containing 80 phr GTM increased around 350%; the corresponding hardness (Shore D) and tensile strength decreased to around 35 D and 20 MPa, respectively. Moreover, the glass‐transition temperature (Tg) of PVC composites containing 40 phr GTM decreased to around 50°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Blends of poly(vinyl chloride) (PVC) and acrylonitrile-chlorinated polyethylene-styrene (ACS) graft copolymer were prepared by melt blending. Mechanical properties were studied by the use of dynamic mechanical analysis (DMA), impact tests, tensile tests, and scanning electron microscopy (SEM). The DMA study showed that PVC is immiscible with chlorinated polyethylene in ACS but partially miscible with poly(styrene-co-acrylonitrile) (25% acrylonitrile content) in ACS. Mechanical property tests showed that there is a significant increase in the impact strength while other good mechanical properties of PVC such as high modulus and high strength remain. SEM observations supported the results of the mechanical properties studies. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 399–405, 1997  相似文献   

12.
Hydrocalumite as a new‐type of thermal stabilizer used in poly(vinyl chloride) resin had been well prepared by using precipitation transformation method. The as‐prepared hydrocalumite was then modified by sodium stearate in different condition including temperature, stirring time, and the amount of sodium stearate. Scanning electron microscopy tests demonstrate that hydrocalumite had been well modified. Illustrated by activation grade, the static oven heat aging experiments and the rate of thermal weight loss, it turns out that the best modification condition is when the addition of sodium stearate is 6% of hydrocalumite (wt), the reacting temperature is 90 °C, and the stirring time is 100 min. Static thermal aging test shows that the aging time got improved at least 30 min under the high temperature of 190 °C, and the time when Congo red test paper began to turn blue for modified hydrocalumite is 20 min longer than that of unmodified hydrocalumite. All results turn out to be that the hydrocalumite modified by sodium stearate in such condition had good compatibility with poly(vinyl chloride) and presented better thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45758.  相似文献   

13.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
To improve the thermal stability of poly(vinyl chloride) (PVC) and the utilization of lignin (L), different L esters were added to PVC to produce the plates with enhanced thermal stabilities. The properties and structures of the L ester–PVC plates and the properties of the L esters and their mixtures with PVC were analyzed by universal mechanical testing, static thermal stability testing, thermogravimetry–Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, FTIR spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The results show that L improved the thermal stability of PVC, but the mechanical properties were substantially deteriorated. Proper esterification of L improved the thermal stabilities and mechanical properties of the plates. Noncyclic anhydride acetylated L–PVC plates possessed good static and dynamic thermal stabilities and mechanical properties. The PVC plates incorporated with the L esters with a degree of esterification of around 40% exhibited the best combination properties. Maleated L–PVC plates had good dynamic thermal stability and mechanical properties but poor static thermal stability. The opposite properties were found for succinylated L–PVC plates. The differences in the properties of different L ester–PVC plates were attributed to the different abilities of L esters to capture free radicals, the crosslinking reaction between L esters and PVC, and their compatibility. Different properties of the L esters indicated their different applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47176.  相似文献   

15.
This article describes the development of novel nanocrystalline poly(vinyl chloride) (PVC) for potential applications in PVC processes and reports improvements in the mechanical properties and thermal resistance. Before the preparation of nanocrystalline PVC via jet milling, PVC was spray‐treated and heat‐treated to improve its crystallinity. The pulverization and degradation, morphology, crystalline structure, and melting‐point changes of postmodified PVC during jet milling and the relationship between the distributions of the particle size and processing temperature were investigated. X‐ray analysis and density testing indicated increased density and improved crystallinity. The crystalline region of nanocrystalline PVC was less than 80 nm, with a particle size distribution of 5–20 μm and a melting point of less than 128°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 563–569, 2004  相似文献   

16.
We use a poly(vinyl chloride) (PVC) gel and an electrode to fabricate adaptive microlens arrays (MLAs). The electrode has a zoned-array pattern. By applying a direct current voltage to the electrode, the PVC gel on each zoned electrode exhibited the character of a lens. The imaging of the MLA can be analyzed using either an optical microscope or a beam profiler or both. The topography of the PVC gel can be measured using an optical surface profiler. Compared to the imaging and focusing, the topographic map can discover additional information about the performances of the MLA. For example, the focal length of each lens in the MLA can be calculated precisely, and the aberration of the MLA can also be evaluated. Results show that the surface profile is an important factor for characterizing the performance of PVC-gel-based MLA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47407.  相似文献   

17.
This article reports on the study of the thermal aging of poly(vinyl chloride) (PVC) used in medium‐ and high‐voltage cables. It is shown that the thermal aging leads to the degradation of the material and to the modification of its electrical properties. The degradation is all the more important and faster as the temperature is high. This degradation is attributed to a progressive evaporation of the plasticizer at the beginning of aging and to a weight loss of stabilizer followed by a change in the color of polymer and a release of hydrochloric acid at more advanced stages of aging. It also results in a crosslinking of the material and a shrinking of samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4728–4733, 2006  相似文献   

18.
Linear and branched poly(butylene adipate)s (PBA) with molecular weights ranging from 2000 to 10,000 g/mol, and a branching agent content between 0 and 1.8%, were solution cast with poly(vinyl chloride) (PVC) to form 50‐ to 60‐μm thick flexible films. Dry films were analyzed by tensile testing, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and optical microscopy (OM) to study the effects of molecular weight and branching on the plasticizing efficiency of the polyester. PBA formed a semimiscible two‐phase system with PVC, where the amorphous part exhibited a single glass transition temperature. The degree of crystallinity for the polyester, surface composition, and mechanical properties of the films depended on the blend composition, molecular weight, and degree of branching of the polyester. Plasticizing efficiency was improved by higher degree of branching. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2180–2188, 2006  相似文献   

19.
In this work, ethylene‐co‐vinyl acetate (EVA), poly(ethylene‐co‐octene) (POE), and poly(vinyl chloride) (PVC) blends were processed in a molten state process using a corotating twin‐screw extruder to assess both the balance of mechanical properties and physical interactions in the melt state. Tensile measurements, scanning electron microscopy, and oscillatory rheometry were performed. By means of flow curves, the parameters of the power law as well as the distribution of relaxation times were assessed with the aid of a nonlinear regularization method. The mechanical properties for the EVA‐POE blend approximated the values for POE, while inclusion of PVC shifted the modulus values to those of neat EVA. The rise in modulus was corroborated by the PVC phase dispersion as solid particles that act as a reinforcement for the ternary blend. The rheological properties in the molten state show that the POE does not present molecular entanglement effects and so tends both to diminish the EVA mechanical properties and increase the fluidity of the blend. However, the addition of PVC both restored the EVA typical pseudoplastic feature and promoted the increase in the viscosity and the mechanical properties of the ternary blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号