首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This article presents a laboratory study of the ozonation of diluted cherry stillage, a high-strength wastewater. Influence of variables, kinetics, and the effects of an ozonation stage coupled with the biological treatment by activated sludge are addressed. Single activated sludge processing was shown effective to remove biological oxygen demand (BOD) and chemical oxygen demand (COD) but polyphenols were reduced to a lesser extent. On the other hand, direct wastewater ozonation did not reduce COD and total organic carbon (TOC) appreciably, and foaming problems were experienced when a high gas flow rate was applied. However, polyphenols and UV254 absorbance decreased substantially by means of ozonation. To best achieve complete cherry stillage purification, two ways of coupling ozonation with activated sludge are proposed. Ozonation prior to activated sludge is advised for high-concentration wastewater to reduce polyphenol concentration, thus removing inhibiting effects. For wastewater with low polyphenol concentration the sequence activated sludge–ozonation–activated sludge is preferred to enhance the overall process performance in terms of oxidation efficiency and sludge settling.  相似文献   

2.
An Intermittent Cycle Extended Aeration System (ICEAS) offers advantages for treating sewage; such as easy operation, process flexibility, and low capital cost. A laboratory‐scale study was made with synthetic‐domestic wastewater (COD = 300 mg dm−3; BOD = 210 mg dm−3) to investigate appropriate conditions for reduced operating cost. The results from this study indicated that the maximum hydraulic loading and organic loading were 3.5 m3 m−3 d−1 and 0.735 kg BOD m−3d−1 respectively. The BOD and COD of effluent were 15.5 mg dm−3 and 29.6 mg dm−3 for the cycle time and aeration time of 3.4 h and 2.65 h. It was not necessary to supply external artificial substrates in the reactor to deal with low wastewater flow that caused the starvation of sludge. Specific oxygen uptake rate (SOUR) was used as the index of microbial activity. The study indicated that the microbial activity could be restored (SOUR = 20.5 mg g−1 MLVSS h−1) after 5–6 days of cultivation when the sludge was deprived of substrate for 17 days. © 1999 Society of Chemical Industry  相似文献   

3.
Ozonation of a natural tannin (NT; CODo?=?1195 mg/L; TOCo?=?342 mg/L; BOD5,o?=?86 mg/L) and a synthetic tannin ST; CODo?=?465 mg/L; TOCo?=?55 mg/L; BOD5,o?=?6 mg/L) being frequently applied in the polyamide dyeing process was investigated. Synthetic wastewater samples containing these tannins individually were prepared and subjected to ozonation at varying ozone doses (625– 1250 mgO3/L wastewater), at pH?=?3.5 (the application pH of tannins) and pH?=?7.0 at an ozone dose of 1125 mgO3/L wastewater. The collective environmental parameters COD, TOC, BOD5, UV254 and UV280 (UV absorbance at 254 nm and 280 nm, representing aromatic and unsaturated moieties, respectively) were followed during ozonation. Changes in the biodegradability of the tannins were evaluated in terms of BOD5 measurements conducted before and after ozonation. In addition, activated sludge inhibition tests employing heterotrophic biomass were run to elucidate the inhibitory effect of raw and ozonated textile tannins towards activated sludge biomass. Partial oxidation (45% COD removal at an ozone dose of 750 mg O3/L wastewater and pH?=?3.5) of ST was sufficient to achieve elimination of its inhibitory effect towards heterotrophic biomass and acceptable biodegradability improvement, whereas the inhibitory effect and biodegradability of NT could not be reduced via ozonation under the same reaction conditions.  相似文献   

4.
The aim of this study was to investigate the effectiveness of chemical oxidation by applying ozonation, combination of ozone and hydrogen peroxide and Fenton's processes for decolorization and residual chemical oxygen demand (COD) removal of biologically pretreated pulp and paper industry effluents. The batch tests were performed to determine the optimum operating conditions including pH, O3, H2O2, and Fe2+ dosages. H2O2 addition reduced the reaction times for the same ozone dosages; however combinations of ozone/hydrogen peroxide were only faintly more effective than ozone alone for COD and color removals. In the Fenton‘s oxidation studies, the removal efficiencies of COD, color and ultraviolet absorbance at 254 nm (UV254) for biologically treated pulp and paper industry effluents were found to be about 83, 95, and 89%, respectively. Experimental studies indicated that Fenton oxidation was a more effective process for the reduction of COD, color, and UV254when compared to ozonation and ozone/hydrogen peroxide combination. Fenton oxidation was found to have less operating cost for color removal from wastewater per cubic meter than the cost for ozone and ozone/hydrogen peroxide applications.  相似文献   

5.
Aerobic treatment of refinery wastewater was carried out in a 200 dm3 gas–liquid–solid three‐phase flow airlift loop bioreactor, in which a biological membrane replaced the activated sludge. The influences of temperature, pH, gas–liquid ratio and hydraulic residence time on the reductions in chemical oxygen demand (COD) and NH4‐N were investigated and discussed. The optimum operation conditions were obtained as temperature of 25–35 °C, pH value of 7.0–8.0, gas–liquid ratio of 50 and hydraulic residence time of 4 h. The radial and axial positions had little influence on the local profiles of COD and NH4‐N. Under the optimum operating conditions, the effluent COD and NH4‐N were less than 100 mg dm?3 and 15 mg dm?3 respectively for more than 40 days, satisfying the national primary discharge standard of China (GB 8978‐1996). Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Ozonation of 2 commercially important textile biocidal finishing agents (called BI and BII herein) in aqueous solution was studied in a semi-batch bubble column reactor at different ozone feed rates (500, 750, and 900 mg/h) and pH (pH=7 and 12). Ozonation efficiency and kinetics were assessed in terms of COD, TOC and UV absorbance at 280 nm (UV280) and 254 nm (UV254), representing the aromaticity and unsaturated moieties of the studied textile biocides, respectively. Due to its chlorinated aromatic content, the fate of Adsorbable Organic Halogens (AOX) of BI was also followed during the ozonation experiments. At alkaline pH, appreciably higher COD and TOC removals were achieved, speaking for a free radical (?OH) dominated degradation pathway for both tested biocides. AOX, UV280 and TOC abatement rates obtained for BI ozonation at optimized reaction conditions indicated that the degradation of BI followed a sequential path of dechlorination, dearomatization, oxidation and mineralization, respectively.  相似文献   

7.
BACKGROUND: The integration of UV photocatalysis and biofiltration seems to be a promising combination of technologies for the removal of hydrophobic and poorly biodegradable air pollutants. The influence of pre‐treatments based on UV254 nm photocatalysis and photo‐oxidation on the biofiltration of toluene as a target compound was evaluated in a controlled long‐term experimental study using different system configurations: a standalone biofilter, a combined UV photocatalytic reactor‐biofilter, and a combined UV photo‐oxidation reactor (without catalyst)‐biofilter. RESULTS: Under the operational conditions used (residence time of 2.7 s and toluene concentrations 600–1200 mg C m?3), relatively low removal efficiencies (6–3%) were reached in the photocatalytic reactor and no degradation of toluene was found when the photo‐oxidation reactor was operated without catalyst. A noticeable improvement in the performance of the biofilter combined with a photocatalytic reactor was observed, and the elimination capacity of the biological process increased by more than 12 g C h?1 m?3 at the inlet loads studied of 50–100 g C h?1 m?3. No positive effect on toluene removal was observed for the combination of UV photoreactor and biofilter. CONCLUSIONS: Biofilter pre‐treatment based on UV254 nm photocatalysis showed promising results for the removal of hydrophobic and recalcitrant air pollutants, providing synergistic improvement in the removal of toluene. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The chemical treatment of cork‐processing wastewater by ozonation, alone and in combination with hydrogen peroxide and UV radiation was investigated. A reduction of the chemical oxygen demand (COD) ranging from 42% to 76% was obtained during ozonation after 3 h of reaction, depending on the experimental conditions. The additional presence of hydrogen peroxide and UV radiation enhanced the efficiency of the ozonation treatment due to the contribution of the OH radicals formed in the decomposition of ozone. Thus, final reductions of the COD higher than 90% and a complete elimination of phenolic compounds and absorbance at 254 nm were achieved in both Advanced Oxidation Processes (AOPs), O3/H2O2 and O3/UV. Therefore the effluent resulting from the ozonation treatments can be reused in the cork‐processing industry. In a second step, the chemical treatment was conducted by means of UV radiation alone and by the action of hydroxyl radicals, which were generated by the following AOPs: UV/H2O2, Fenton's reagent, and photo‐Fenton system. The single photochemical process resulted in 9% of the organic matter present being removed, while the AOPs significantly enhanced this reduction with values in the range 20–75%. Kinetic studies for both groups of treatments were performed, and apparent kinetic rate constants were evaluated. In the ozone‐based experiments, the rate constants ranged from 1846 to 10922 dm3 mol?1 O3 h?1, depending on the operating conditions. In the oxidation experiments using oxidants other than ozone, the rate constants varied between 0.06 and 1.19 h?1. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The present work is a study of oxidative degradation of the organic matter present in the washing waters from the black‐table‐olive industry. This oxidation is performed by an ozonation process, by an aerobic biological degradation process, and by another ozonation of biologically pretreated washing waters. In the ozonation process, a second‐order kinetic reaction with respect to ozone and COD or aromaticity has been deduced. The kinetic rate constants were correlated as a function of temperature by Arrhenius‐type equations. In the aerobic biological treatment, a kinetic study was performed using the Contois model, giving a value of 4.8 10−2 h−1 for the kinetic bioreaction constant. Likewise, a cell yield coefficient of 0.30 g VSS g COD−1 and a kinetic constant for the endogenous metabolisme of 1.2 10−2 h−1 were deduced. Finally, in the ozonation of biologically pretreated wash‐waters, the deduced kinetic rate constants for COD and aromaticity were, respectively, 4.5 and 2.4 times higher that those corresponding to the ozonation of wash‐waters without biological pretreatment. © 2000 Society of Chemical Industry  相似文献   

10.
The performance of an upflow anaerobic filter (UAF) treating a chemical synthesis‐based pharmaceutical wastewater was evaluated under various operating conditions. During start‐up, the UAF was initially fed by glucose till an organic loading rate (OLR) of approximately 7.5 kg COD m?3 day?1 with a hydraulic retention time of 2.3 days. A soluble COD removal efficiency of 98% was achieved before the addition of the wastewater. Initially, the filter inertia was acclimatized to the wastewater by sequential feeding of 10% (w/v), 30% (w/v) and 70% (w/v) of the pre‐aerated wastewater mixed with glucose followed by a 100% (w/v) pre‐aerated wastewater. During the operation, the COD removal efficiency and methane yield decreased to 75% and 0.30 m3 CH4 kg?1 CODremoved respectively. As the UAF became accustomed to the pre‐aerated wastewater, raw wastewater was fed in increasing ratios of 20% (w/v), 60% (w/v) and 80% (w/v) with the pre‐aerated wastewater as the remaining part. During this stage of the operation, a COD removal efficiency in a range of 77–86% was achieved and the methane yield decreased to 0.24 m3 CH4 kg?1 CODremoved. Finally, 100% (w/v) raw wastewater was fed and a COD removal efficiency of 65% was achieved with a methane yield of 0.20 m3 CH4 kg?1 CODremoved. At the end of the operation, acetoclastic methanogenic activity was only measured in the bottom section of the UAF, this showed a 90% reduction in comparison with activity of inoculation sludge. Microscopic examinations revealed that rod‐shaped methanogens remained as the dominant species whereas Methanosarcina‐like species and filaments were present only in insignificant numbers along the UAF. © 2002 Society of Chemical Industry  相似文献   

11.
Municipal wastewaters taken from a primary sedimentation tank were subjected to different chemical oxidation processes (ozonation or UV radiation alone or combined with hydrogen peroxide) to observe the evolution of COD and BOD/COD ratios. Ozonation of wastewater led to different increases of COD level reduction depending on pH and carbonate‐bicarbonate ion concentrations. Direct photolysis or hydrogen peroxide alone were found to be inappropriate technologies. On the other hand, advanced chemical oxidation, that is, oxidation with ozone or UV radiation combined with hydrogen peroxide, increased COD level reduction only when wastewater was previously decarbonated. Thus, elimination of carbonate‐bicarbonate ions, increase of pH and addition of hydrogen peroxide (10‐3 M) yield increases COD level reduction rates. Finally, preozonation also allows improvement of wastewater biodegradability.  相似文献   

12.
The objective of this study was to evaluate the optimal location of ozonation within biological treatment for a typical tannery wastewater by giving special attention to biodegradability‐based chemical oxygen demand (COD) characterization. As treating the raw tannery effluent solely by biological treatment is not adequate to meet the discharge standards owing to the high level of biorecalcitrant COD at the outlet, the application of chemical oxidation, i.e. ozone together with biotreatment (pre‐ozonation or in mid‐ozonation or post‐ozonation) was investigated. The tannery effluent under investigation had initially inert soluble COD (SI1) and particulate COD (XI1) fractions corresponding to 9% and 13% of the total COD (CT1), respectively, whereas each component of the biodegradable part—readily biodegradable COD (SS1), rapidly hydrolysable COD (SH1), and slowly hydrolysable COD (XS1)—accounted for around 26% of the total COD (CT1). Pre‐ozonation, undesirably competing with biotreatment for the removal of degradable organics, was shown to be insufficient both in terms of total COD (CT1) and inert COD (CI1) removal efficiencies. The scheme of biological treatment + ozonation + biological treatment could be applied successfully when 42.8 mg O3 min?1 was introduced for 5 min with a utilized ozone percentage of 76% at a point in biological treatment where the readily biodegradable COD (SS1) was depleted through biochemical reactions. Such an alternative yielded satisfactory outcomes when both total COD (CT) and inert COD (CI) removal efficiencies per utilized ozone ratios were considered. With post‐ozonation, on the other hand, the highest inert COD (CI) removal efficiencies together with an effluent quality meeting the discharge standards could be obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Ozone is applied in wastewater treatment for effluent water quality improvement (post‐ozonation) as well as for excess sludge reduction (in the recirculation line). There is some evidence that ozone dosed directly to aerobic biooxidation (ABO) process enhances degradation of recalcitrant compounds into intermediates, following their biodegradation in the same reactor. However, no information regarding the influence of ozone on sludge yield in this system was found. Therefore, the current work aimed to evaluate the effect of ozone on the sludge yield when ozone is dosed directly to the ABO process. In addition, batch and continuous treatment schemes for phenolic wastewater treatment are compared. RESULTS: The results revealed that an optimal ozone dose of ~30 mgO3 L?1 day?1 reduced the sludge yield by ~50%, while effluent water quality in terms of total chemical oxygen demand (TCOD), compared with a conventional ABO process, was improved by 35.5 ± 3.6%. Slight improvement in soluble COD removal at the same ozone dose was also detected. The toxicity of effluent water was reduced as the ozone dose was increased. CONCLUSIONS: In an integrated ozonation‐ABO process it is possible to simultaneously reduce sludge yield and to improve effluent water quality, as COD and toxicity are reduced. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
In this study, two full‐scale upflow anaerobic sludge blanket (UASB) reactors, namely TUASB and CUASB, at the wastewater treatment plants of the Tekirdaǧ Alcohol (Raki) and Canakkale Alcohol (Cognac) distilleries were investigated in terms of performance, acetoclastic methanogenic capacity and microbial composition. The results were compared with a previously studied other UASB reactor (IUASB) at the wastewater treatment plant of the Istanbul Alcohol (Raki) Distillery from which the two reactors (TUASB and CUASB) were seeded. The IUASB reactor performed well achieving COD removal efficiencies of no lower than 85% at organic logding rates (OLRs) in the range of 6–11 kg COD m−3 day−1 between 1996 and 2001. During the last one year of operation, between 2000 and 2001, performance of the CUASB reactor in terms of COD removal efficiency was 70–80% at OLRs in a range of 1–4.5 kg COD m−3 day−1 whereas it was 60–80% at OLRs in a range of 2.5–8.5 kg COD m−3 day−1 in the TUASB reactor. At the end of year 2000, specific methanogenic activity (SMA) tests were carried out to determine potential loading capacity and optimum operating conditions of the IUASB, CUASB and TUASB reactors. The potential methane production (PMP) rates of the CUASB, IUASB and TUASB reactors were measured as 230 cm3 CH4 gVSS−1 day−1, 350 cm3 CH4 gVSS−1 day−1 and 376 cm3 CH4 gVSS−1 day−1 respectively. When the PMP rates were compared with actual methane production (AMP) rates obtained from the three UASB reactors, AMP/PMP ratios were evaluated to be 0.18, 0.12 and 0.13 for CUASB, TUASB and IUASB reactors respectively. This showed that the CUASB, TUASB and IUASB reactors were using only 18%, 12% and 13% of their potential acetoclastic methanogenic capacity respectively. These results can be interpreted that the three UASB reactors were underloaded compared with their potential acetoclastic methanogenic capacities. It was, therefore, recommended that the three UASB reactors should be loaded at higher organic loading rates or sludge withdrawn in order to maintain an AMP/PMP ratio of 0.6–0.7, which can ensure desired reactor performance with safer operation. Results of epifluoresence microscopic examinations showed that the percentage of total autofluorescent methanogens was approximately 30% of the total population in sludges from the TUASB and IUASB reactors whereas it was 20% in sludge from the CUASB reactor. The two UASB reactors treating raki distillery wastewaters contained sludges having a higher percentage of autofluorescent methanogenic population and higher acetoclastic methanogenic activity. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Ozonation of complex industrial park wastewater was carried out in a semi‐batch reactor. The variation of wastewater characteristics was evaluated based on the analysis of 5‐day biochemical oxygen demand (BOD5) concentration, BOD5/chemical oxygen demand (COD) ratio, COD fractionation, and dissolved organic carbon (DOC) molecular size distribution before and after ozonation. RESULTS: The experimental results indicated that low efficiency of COD removal with increasing tendency of BOD5 concentration generally appeared after ozonation. Also, the BOD5/COD ratio increased from an initial of 0.27 to a maximum of 0.38. The COD fractionation tests revealed that most of the inert soluble COD was transformed to biodegradable soluble COD at 30 min of reaction time. Additionally, the DOC molecular size distribution tests showed that the fraction larger than 500 kDa was significantly decreased and the fraction smaller than 2 kDa was increased when the reaction time was prolonged to 240 min. CONCLUSION: This study verified that partial oxidation of the complex industrial park wastewater by ozonation could enhance wastewater biodegradability. The biodegradability enhancement was primarily because the inert soluble COD fraction was converted to the biodegradable soluble COD and the high molecular weight fraction of DOC was shifted toward the low molecular weight fraction. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
Thermophilic anaerobic treatment of hot vegetable processing wastewaters was studied in laboratory-scale UASB reactors at 55°C. The high-strength wastewater streams, deriving from steam peeling and blanching of carrot, potato and swede were used. The reactors were inoculated with mesophilic granular sludge. Stable thermophilic methanogenesis with about 60% COD removal was reached within 28 days. During the 134 day study period the loading rate was increased up to 24 kg COD m−3 day−1. High treatment efficiency of more than 90% COD removal and concomitant methane production of 7·3 m3 CH4 m−3 day−1 were achieved. The anaerobic process performance was not affected by the changes in the wastewater due to the different processed vegetables. The results demonstrated the feasibility of thermophilic anaerobic treatment of vegetable processing wastewaters in UASB reactors. © 1997 SCI.  相似文献   

17.
Simultaneous organic carbon and nitrogen removal was studied in a sequencing batch reactor (SBR) fed with synthetic municipal wastewater and controlled at a low dissolved oxygen (DO) level (0.8 mg dm?3). Experimental results over a long time (120 days) showed that the reactor achieved high treatment capacities (organic and nitrogen loading rates reached as high as 2.4 kg COD m?3 d?1 and 0.24 kg NH3‐N m3 d?1) and efficiencies (COD, NH3‐N and total nitrogen removal efficiencies were 95%, 99% and 75%). No filamentous bacteria were found in the sludge even though the reactor had been seeded with filamentous bulking sludge. Instead, granular sludge, which possessed high activity and good settleability, was formed. Furthermore, the sludge production rate under low DO was less than that under high DO. Significant benefits, such as low investment and less operating cost, will be obtained from the new process. © 2001 Society of Chemical Industry  相似文献   

18.
The current study focused on treatment of phenolic wastewater using an integrated process – dosing of ozone directly to activated sludge. The main goal was to analyze the effect of ozonation on viability of activated sludge in different systems – activated sludge in distilled water and activated sludge in wastewater. Two viability detection methods, oxygen uptake (OUR) rate and adenosine-5'-triphosphate measurement (ATP), were compared. The linear correlation between ATP and OUR measurements in studied range was found to be good (r2 = 0.90). In case of ozonation of activated sludge in wastewater, ozone doses up to 42 mgO3·gMLVSS?1 did not influence the viability of sludge. In addition, contrary to ozonation of sludge in distilled water, soluble COD was reduced by 15.6% (at ozone dose of 42 mgO3·gMLVSS?1).  相似文献   

19.
A simulated textile effluent (STE) was generated for use in laboratory biotreatment studies; this effluent contained one reactive azo dye, PROCION Red H‐E7B (1.5 g dm−3); sizing agent, Tissalys 150 (1.9 g dm−3); sodium chloride (1.5 g dm−3) and acetic acid (0.53 g dm−3) together with nutrients and trace elements, giving a mean COD of 3480 mg dm−3. An inclined tubular anaerobic digester (ITD) was operated for 9 months on the STE and a UASB reactor for 3 months. For a 57 day period anaerobic effluent from two reactors, a UASB and an ITD, was mixed and treated in an aerobic stage. In days 77–247 68% of the true colour of PROCION Red H‐E7B was removed by anaerobic treatment with no colour removal aerobically and up to 37% COD was removed anaerobically, with a corresponding BOD removal of 71%. For combined anaerobic and aerobic treatment a mean COD removal of 57% and BOD removal of 86% was achieved. Operation of the ITD at a 2.8 day HRT (volumetric loading rate (B v) 1.24 g COD dm−3day−1) and the UASB at a 2 day HRT (B v 1.74 g COD dm−3day−1) gave comparable COD removals but the UASB gave better true colour removal. Effluent from the combined process operating on this simulated waste still contained an average 1500 mg COD dm−3, and further treatment would be required to meet consent standards. © 1999 Society of Chemical Industry  相似文献   

20.
The study investigates the effect of sludge ozonation on solid matter species, disintegration properties, sludge components, and solubilization characteristics under different operating conditions. Ozonation of surplus activated sludge samples taken from the secondary settling tank of a domestic wastewater treatment plant indicates that soluble nitrogen, phosphorus and COD concentrations proliferate as a consequence of extending the ozone feeding time. A steady increase both in soluble nitrogen concentration and ratio of organic phosphorus to soluble phosphorus is observed through ozonation where specific ozone doses range between 4 and 11 mg O3/g SS. Combined treatment of chemical oxidation and aerobic biodegradation to surplus activated sludge is also applied to improve the biodegradability of organic matter by partial chemical oxidative pretreatment with as little specific ozone consumption as possible. The partial oxidation by integrated ozonation is operated as a pre-oxidation step for the subsequent biological degradation, due to the fact that the competition with biological degradation in removing biodegradable organic compounds is avoided and most probably a more biodegradable sludge composition is obtained by means of ozonation. Combined treatment of chemical oxidation and aerobic biodegradation conducted to scrutinize the synergic effect of the coupled treatment system reveals that TS and COD removal efficiencies of ozonated sludge samples cannot be improved beyond the third aerobic biodegradation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号