首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A phosphorus‐containing epoxy resin, 6‐H‐dibenz[c,e][1,2] oxaphosphorin‐6‐[2,5‐bis(oxiranylmethoxy)phenyl]‐6‐oxide (DOPO epoxy resin), was synthesized and cured with phenolic novolac (Ph Nov), 4,4′‐diaminodiphenylsulfone (DDS), or dicyandiamide (DICY). The reactivity of these three curing agents toward DOPO epoxy resin was found in the order of DICY > DDS > Ph Nov. Thermal stability and the weight loss behavior of the cured polymers were studied by TGA. The phosphorus‐containing epoxy resin showed lower weight loss temperature and higher char yield than that of bisphenol‐A based epoxy resin. The high char yields and limiting oxygen index (LOI) values as well as excellent UL‐94 vertical burn test results of DOPO epoxy resin indicated the flame‐retardant effectiveness of phosphorus‐containing epoxy resins. The DOPO epoxy resin was investigated as a reactive flame‐retardant additive in an electronic encapsulation application. Owing to the rigid structure of DOPO and the pendant P group, the resulting phosphorus‐containing encapsulant exhibited better flame retardancy, higher glass transition temperature, and thermal stability than the regular encapsulant containing a brominated epoxy resin. High LOI value and UL‐94 V‐0 rating could be achieved with a phosphorus content of as low as 1.03% (comparable to bromine content of 7.24%) in the cured epoxy, and no fume and toxic gas emission were observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 353–361, 1999  相似文献   

2.
Summary A novel aryl phosphinate epoxy ether, 10-(2',5'-bis(glycidyloxy)phenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DHQEP), was synthesized. The structures of the obtained compounds were confirmed by mass, FTIR, 1H, 13C, 31P-NMR spectroscopies, elemental analysis, and X-ray single crystal analysis. In addition, compositions of DHQEP with common curing agents, e.g., 4,4'-diaminodiphenylmethane (DDM), 4,4'-diaminodiphenyl sulfone (DDS), and dicyanodiamide (DICY), were studied to compare their thermal and flame resistance with that of commercial epoxy resins. The aryl phosphinate epoxy-resin composites exhibited excellent thermal properties and a quite high limiting oxygen index (LOI) value as well as high char yield. Aryl phosphinate epoxy ether is shown to be an effective flame retardant and thermal stabilizer for epoxy resins. Received: 13 April 1998/Revised version: 8 May 1998/Accepted: 11 May 1998  相似文献   

3.
In an attempt to improve thermal and flame‐retardant properties of epoxy resins efficiently, a new reactive phosphorus‐containing curing agent called 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐(phenylimino)‐(4‐hydroxyphenyl)me‐thane (DOPO‐PHM) was synthesized and was combined with 4,4′‐diaminodiphenyl methane (DDM) to co‐cure epoxy resins (E51), which covalently incorporated halogen‐free DOPO organ groups into the epoxy networks. The chemical structure of this curing agent was confirmed by FTIR, 1D, and 2D NMR spectra. A reaction mechanism during the preparation was proposed, and the electron effect on the stabilization of the carbocation was discussed. Various DDM/DOPO‐PHM molar ratios were used to get the materials with different phosphorus contents. Their dynamic mechanical, thermal, and flame‐retardant properties were evaluated by dynamic mechanical thermal analysis, thermogravimetric analysis, and limiting oxygen index (LOI) respectively. All samples had a single Tg, showing that these epoxy resins were homogeneous phase for long‐term use in spite of adding DOPO‐PHM. Both char yields (under nitrogen and air atmospheres) increased with the increasing of phosphorus content and the LOI values increased from 24.5 for standard resin to 33.5 for phosphorus‐containing resins, indicating the significant enhancement of thermal stability and flame retardancy. POLYM. ENG. SCI., 54:1192–1200, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
A novel hyperbranched polyphosphate ester (HPE) was synthesized via the polycondensation of bisphenol-A and phosphoryl trichloride. The formed HPE was characterized by FTIR, 1H NMR and 31P NMR to confirm its structure. Then, a series flame retardant epoxy resins from bisphenol-A epoxy cured with HPE and bisphenol-A were prepared. The combustion behavior of the flame retardant epoxy resins was studied using limiting oxygen index (LOI) and cone calorimeter test. The LOI value increased from 23 to 32 when HPE, instead of bisphenol-A, was used as a curing agent. The cone calorimeter test data revealed that the cured bisphenol-A epoxy resin with HPE as a curing agent possessed improved flame retardancy. The photo graphs and scanning electron microscopy (SEM) of char residues confirmed the cone calorimeter results.  相似文献   

5.
The ? P(O)‐H in 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was used as an active group to react with the carbonyl group in 4,4′‐dihydroxybenzophenone (DHBP) to result a novel phosphorous‐containing biphenol compound (DOPO‐2OH). Phosphorous‐containing epoxy resins were therefore obtained from reacting DOPO‐2OH with epichlorohydrin or with diglycidylether bisphenol A. The synthesized compounds were characterized with FTIR, 1H and 31P NMR, elemental analysis, and epoxide equivalent weight titration to demonstrate the their chemical structures. Cured epoxy resins were prepared via thermal curing the epoxy resins with various curing agents. Thermal analysis results (differential scanning calorimetry and thermogravimetric analysis) revealed that these cured epoxy resins exhibited high glass transition temperatures and high thermal stability. High char yields at 700°C and high LOI (limited oxygen index) values were also found for the cured epoxy resins to imply that the resins were possessing high flame retardancy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1697–1701, 2002  相似文献   

6.
Epoxy/silsesquioxane‐OH (EP‐SDOH, ED) hybrid resins were prepared from cyclohexyl‐disilanol silsesquioxane (SDOH) and diglycidyl ether of bisphenol A via the reaction between silanol and the oxirane group, with the cobalt naphthanate as a catalyst. It was found that incorporation of SDOH allows the reaction between oxirane ring and Si? OH, and the silsesquioxane cage structure can be the main chain or as the side chain of the hybrid resin. The EP‐SDOH hybrid resins with various SDOH contents were cured by 4,4′‐diaminodiphenylsulphone, and the curing reaction was investigated by differential scanning calorimetry. The curing characteristics of EP‐SDOH hybrids had been observed to be influenced by the content of SDOH in the hybrid. The differential scanning calorimetry thermograms indicated that the EP‐SDOH hybrid exhibited a higher initial temperature, peak temperature, as well as final temperature than those of the pure epoxy resin when cured by the same curing agent 4,4′‐diaminodiphenylsulphone. The curing kinetic parameters were calculated by using the Ozawa method and the results indicated that EP‐SDOH hybrids possess the same curing mechanism as the pure epoxy resin. The properties of the cured EP‐SDOH hybrid resins such as the glass transition temperature (Tg), dynamic mechanical analysis, thermal stability, as well as the flame retardance were also investigated, and the results showed that introducing silsesquioxane‐OH unit into epoxy resin successfully modified the local structure, made the chain stiffness, restrict the chain mobility, and eventually improved thermal stability and flame retardance of epoxy resin. POLYM. ENG. SCI., 47:225–234, 2007. © 2007 Society of Plastics Engineers.  相似文献   

7.
Two phosphorus-containing diamine compounds, bis(4-aminophenoxy)-phenyl phosphine oxide and bis(3-aminophenyl)phenyl phosphine oxide, were synthesized for use as curing agents of epoxy resins. Phosphorylated epoxy resins were obtained by curing Epon 828 and Eponex 1510 with these two diamine agents. For raising the phosphorus contents of the resulting epoxy resins, the phosphorus-containing epoxy, bis(glycidyloxy)phenyl phosphine oxide (BGPPO), was also used. These two diamine agents showed similar reactivity toward epoxies. Their reactivities were higher than DDS and lower than DDM. High char yields in TGA evaluation were found for all the phosphorylated epoxy resins, implying their high flame retardancy. The excellent flame-retardant properties of these phosphorylated epoxy resins were also demonstrated by the high limiting oxygen index (LOI) values of 33 to 51. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 895–901, 1997  相似文献   

8.
介绍了近年来胺类环氧树脂固化剂改性的一个重要方面——阻燃型胺类环氧树脂固化剂,及其阻燃性、耐热性的研究进展。阻燃型胺类环氧树脂固化剂主要包括含磷、含氮杂环、含硅胺类固化剂,以及含氮磷杂环和含硅-磷胺类固化剂。  相似文献   

9.
A new phosphorylated epoxy–imide polymer was obtained using diimide–diepoxide (DIDE) cured with tris(3-aminophenyl)phosphine oxide (TAPO). In addition, compositions of the synthesized diimide diepoxide (DIDE), Epon 828, and DEN 438 with common curing agents, e.g., 4,4′-diaminodiphenyl ether (DDE) and 4,4′-diaminodiphenylsulfone (DDS), were compared as to curing reactivity and heat and flame retardation with that of tris(3-aminophenyl)phosphine oxide. The reactivities of those curing agent toward the three kinds of epoxy resins, as measured by differential scanning calorimetry (DSC), were in the order DDE > TAPO > DDS. Through thermal gravimetric analysis (TGA), the thermal and flame resistances of epoxy were confirmed in this study as capable of being significantly improved through introduction of imide and phosphorus groups into the epoxide structure. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
含磷本质阻燃环氧树脂的研究进展   总被引:1,自引:1,他引:0  
贾修伟  楚红英  刘治国 《化工进展》2007,26(11):1546-1553
综述了含磷本质阻燃环氧树脂(包括含磷协同本质阻燃体系)的发展、现状和未来趋势。与添加型阻燃剂阻燃环氧树脂相比,通过含磷环氧化合物和/或含磷固化剂把磷元素嵌入环氧树脂结构中制得的含磷本质阻燃环氧树脂,具有阻燃效率高、阻燃持久、物理力学性能不受影响、燃烧过程中毒性腐蚀性挥发物质的生成量低等优势。利用协同阻燃效应,可以进一步提高阻燃性能。但是,含磷本质阻燃环氧树脂和含磷协同本质阻燃体系存在制备工艺复杂、生产成本较高等不足。  相似文献   

11.
Fire-resistant compositions were prepared using 1-[di(2-chloroethoxyphosphinyl)methyl]-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and MY 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4′-diaminodiphenyl-sulfone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential scanning calorimetry (DSC), was of the order MPD > DCEPD > DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects. It was shown that the heat of polymerization (ΔHpol) increases with increasing epoxy functionality of the resin. The polymers obtained were characterized by DSC, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier-transform infrared (FT-IR). The polymers of DCEPD showed a relatively lower polymer decomposition temperature (PDT) and a higher char yield than the polymers of the common curing agents. Furthermore, it was shown that the thermal characteristics of the compositions were dependent upon the ratio of the reactants. The fire resistance of the polymers was evaluated by determining their limiting oxygen index (LOI) value. The DCEPD polymers, especially those with polyfunctional epoxy resins, showed a significantly higher fire resistance as compared with those polymers of common curing agents.  相似文献   

12.
Epoxy resins containing both phosphorous and silicon were prepared via the fusion process of reacting a phosphorous diol and a silicon diol with a bisphenol‐A‐type epoxy. With various feeding ratios of the reactants, epoxy resins with different phosphorous and silicon contents were obtained. Through curing the epoxies with diaminodiphenylmethane, the cured epoxy resins exhibit tailored glass transition temperatures (159–77°C), good thermal stability (>320°C), and high char yields at 700°C under air atmosphere. The high char yield was demonstrated to come from the synergistic effect of phosphorous and silicon, where phosphorous enriches char formation and silicon protects the char from thermal degradation. Moreover, high flame retardancy of the epoxy resins was found by the high LOI value of 42.5. The relationship of the char yields at 700°C under air atmosphere (ρ) and the LOI values of the epoxy resins could be expressed as LOI = 0.62ρ + 19.2. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 404–411, 2003  相似文献   

13.
The curing behavior of epoxy resins was analyzed based on a simple kinetic model. We simulated the curing kinetics and found that it fits the experimental data well for both diglycidylether of bisphenol A–4,4′‐methylene dianiline and diglycidylether of bisphenol A–carboxyl‐terminated butadiene acrylonitrile–4,4′‐methylene dianiline systems. The kinetic results showed the curing of epoxy resins involves different reactive process and reaction stages, and the value of activation energy is dependent on the degree of conversion. By analyzing the effect of vitrification, at low curing temperature, we found the curing reaction at the later stage was practically diffusion‐controlled for unmodified resin, and the rubber component did not markedly decrease Tg at the early stage of reaction as would be expected. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2401–2408, 1999  相似文献   

14.
利用三聚氰胺和甲醛合成了三羟甲基三聚氰胺(TMM),将其与正硅酸乙酯(TEOS)反应得到三羟甲基化三聚氰胺硅化物(TMMSi)。将TMMSi与环氧树脂复合,采用4,4'-二氨基二苯基甲烷(DDM)作固化剂来制备环氧树脂/TMMSi固化物,并对固化物的热性能和阻燃性能进行了分析。结果表明,与环氧树脂/TMM固化物相比,环氧树脂/TMMSi固化物的玻璃化转变温度变化较小,高温耐热性提高不明显,但是阻燃性能得到了大幅度提高。当TMMSi含量为15份时,环氧树脂/TMMSi固化物的极限氧指数达到29.6 %,比纯环氧树脂固化物提高了40 %。  相似文献   

15.
Triphenyl phosphate (TPP) and its analogs are known to be the most effective flame retardant for acrylonitrile-butadiene-styrene copolymer (ABS) among various phosphorus-based compounds. But, its evaporation temperature is quite lower than the processing temperature of ABS. Therefore, it is inevitable to avoid a considerable amount of TPP to evaporate during processing. In order to overcome this undesirable phenomena, we incorporated various epoxy resins to TPP as coflame retardants and a series of ABS/TPP/epoxy compounds were made from them and their flame retardancy were evaluated by measuring the limiting oxygen index (LOI) values. Our results showed that the incorporated epoxy is very effective in suppressing the evaporation of TPP from the compounds and the LOI value as high as 38 is obtained. It is also found that more the epoxide ring contents in epoxy resins, the higher the LOI value of the compounds. The reason for this finding was postulated to come from the interaction between phosphoric acid and carboxylic acid generated from epoxy during thermal degradation. And some direct evidences from FTIR experiments were presented even though they were not conclusive. Moreover, the LOI values of quaternary mixtures of ABS, tetra-2,6-dimethyl phenyl resorcinol diphosphate, TPP, and epoxy resins were evaluated and that the same synergism of epoxy incorporation on flame retardancy was also found for them.  相似文献   

16.
Two phosphorus‐containing diacids were synthesized from 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and either maleic acid or itaconic acid and then reacted with diglycidyl ether of bisphenol A (DGEBA) to form two series of advanced epoxy resins. Reaction conditions, such as reaction time, temperature and catalyst, are discussed in this article. After curing with 4,4'‐diaminodiphenyl sulfone (DDS), thermal properties of cured epoxy resins were studied using dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA). The flame retardancy of cured epoxy resins was evaluated using a UL‐94 measurement. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 228–235, 2000  相似文献   

17.
Maleimide modified epoxy compounds were prepared through reacting N-(4-hydroxylphenyl)maleimide (HPM) with diglycidylether of bisphenol-A. Triphenylphosphine and methylethylketone were utilized in the reactions as a catalyst and a solvent, respectively. The resulting compounds possessed both oxirane ring and maleimide group. The kinetics of the curing reactions of the maleimide-epoxy compounds and amine curing agents, 4,4-diaminodipheylmethane (DDM) and dicyandiamide (DICY), were studied. Incorporation of maleimide groups into epoxy resins provided cyclic imide structure and high cross-linking density to the cured resins, to bring high glass transition temperatures (179 °C) and good thermal stability (above 380 °C) to the cured resins. High char yields in the thermogravimetric analysis and high limited oxygen index values (25.5-29.5) were also observed for the cured resins to impy their good flame retardance.  相似文献   

18.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Two organophosphorus-based diamines containing aromatic moieties has been synthesized and used as a curing and flame retarding agent for epoxy resin coatings. This agent functions not only as a crosslinking materials in the Epon 828 epoxy resin curing process but also as a fire retarding compound to produce thin films or composites upon curing. Phenyl phosphonic ethylene diamine diamide (PPEDD) was synthesized via condensation of phenylphosphonic dichloride (PPDC and ethylenediamine (EDA)). Likewise, phenyl phosphonic p-phenylene diamine diamide (PPPDD) was synthesized via condensation of PPDC and p-phenylenediamine (PDA). Kinetics studies of the curing reaction of the two phosphorodiamidates were carried out in comparison with the corresponding non-phosphorus containing reference crosslinking agents, EDA and PDA. Thermal stability of the cured epoxy were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, flame retardant properties of the materials was investigated by limiting oxygen index (LOI) measurements. The results show that epoxy resin cured with phosphorodiamidate possesses higher thermostability than that of the non-phosphorus containing counterpart. This is evident by a significantly higher amount of char formed upon burning. More importantly, the LOI of 27 and 31 was observed in the PPEDD-cured epoxy resin and PPPDD-cured epoxy resin compared with those prepared from non-phosphorus curing agents (20 for EDA and 21 for PDA). This was obtained only with approximately 2–3 wt.% of phosphorus content.  相似文献   

20.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号