共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient plane source technique was used for the simultaneous measurement of thermal conductivity and thermal diffisivity of three‐phase styrene butadiene rubber composites. Two series of styrene butadiene rubber composites were studied, having natural rubber as a variable filler in both the composites along with 10 phr of silica and clay, respectively. The measurements were done at room temperature and normal pressure. The experimental results show that there is a small variation in the thermal conductivity of both the composites with the filler (NR) fraction. It is interesting to note that the thermal conductivity shows a sharp decrease at 10 phr filler loading and then increases. The comparative study of these composites shows that the conductivity as well as the diffusivity of the silica reinforced composites is larger than that of the clay composites. The thermal conductivity of the filler NR has been evaluated using the Agari model. It has also been found that the composite with 40 phr of NR has the maximum thermal conductivity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1799–1803, 2000 相似文献
2.
3.
A new method based on Enskog's hard sphere theory for dense fluids and the principle of corresponding states is presented for predicting thermal conductivity of pure organic liquids and their mixtures. The thermal conductivities of alkanes, isoalkanes, aromatics, aldehydes, esters and ketones were calculated using this method which requires only critical properties and normal boiling point as input data. The predictions were compared with experimental data and other prediction methods over a wide range of temperatures (0.3 < Tr < 0.8) and highly satisfactory results were obtained. The method was also extended to mixtures employing simple mixing rules for calculating mixture properties. 相似文献
4.
Castable particulate‐filled epoxy resins exhibiting excellent thermal conductivity have been prepared using hexagonal boron nitride (hBN) and cubic boron nitride (cBN) as fillers. The thermal conductivity of boron nitride filled epoxy matrix composites was enhanced up to 217% through silane surface treatment of fillers and multi‐modal particle size mixing (two different hBN particle sizes and one cBN particle size) prior to fabricating the composite. The measurements and interpretation of the curing kinetics of anhydride cured epoxies as continuous matrix, loaded with BN having multi‐modal particle size distribution, as heat conductive fillers, are highlighted. This study evidences the importance of surface engineering and multi‐modal mixing distribution applied in inorganic fillered epoxy‐matrix composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
5.
In this article, a statistical‐thermodynamic formula based on a new approach has been developed to predict electrical conductivity of carbon‐filled composites used for bipolar plate of proton exchange membrane fuel cell. In this model, based on percolation threshold phenomenon, it is assumed that the relationship between electrical conductivity of composite and filler volume fraction follows a sigmoidal equation. Afterwards, the four effective factors on composite conductivity including filler electrical conductivity, filler aspect ratio, wettability, as well as interface contact resistance are replaced upon constant parameters of sigmoidal function. In order to test the model, some single‐filler composites have been manufactured by using the phenolic resin as binder and graphite (G), expanded graphite (EG), and carbon fiber (CF) as fillers. The fitting quality is measured by R‐square, adjusted R‐square, SSE, and RMSE parameters. The results showed that there is a noteworthy agreement between the model and the experimental data. Compared to the other models, this model can be used for more types of fillers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
6.
The electrical properties of carbon black (CB)‐filled two‐phased thermoplastic vulcanizates (based on ethylene‐propylene‐diene copolymer and polypropylene, TPV) were investigated in this article. The results showed that the composites had a singularity in electrical conductivity compared with CB‐filled polypropylene composites. Both the loading of CB and the concentration of rubber phase in TPV had the remarkable effect on electrical property of composites. The rubber particles in TPV presented unique and competitive effects in constructing CB electrical conducting network, namely exclusion and block effects. The percolation threshold value of composites apparently decreased with rubber phase content. However, percolation behavior of composites was weakened when rubber phase content was very high. The percolation behavior of composites with loading of CB is weakened apparently by rubber particles. When annealing the composites in the melt state, the resistance‐time dependence of composites was strongly affected by the pressure of mold annealing. Although air aging had a negligible effect on the electrical properties, the microstructure of the CB/TPV composites had changed during air aging. CB/TPV composite only exhibited the negative temperature coefficient behavior even though the temperature was in the melting region of polypropylene, which was mainly attributed to the exclusive effect brought by the thermal expansion of rubber particles. The special electrical properties of CB/TPV can find potential application in many fields. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
Ahmad Mohaddespour Hossein Abolghasemi Meisam Torab Mostaedi Sajjad Habibzadeh 《应用聚合物科学杂志》2010,118(2):1042-1050
High density polyethylene– and polypropylene–clay nanocomposites are synthesized by melt blending, in which polyethylene glycol and polypropylene glycol are used as compatibilizers to increase the space of galleries. The morphology properties of nanocomposites are explored by X‐ray diffraction and transition electron microscopy. The thermal conductivity coefficient (K) of nanocomposites is also measured along with the thermal stability. A conventional model based on developed Maxwell‐Garnett formula is also established to predict the thermal conductivity of polymer/clay nanocomposites with clay loading. Morphology results indicate that two intercalated and exfoliated structures are formed. The established model satisfactorily predicts the K values of nanocomposites for low range of clay content. Thermogravimetric analysis shows remarkable thermal stability of nanocomposites with 10 wt % of clay content. The deviation of our model from experimental result for 10 wt % of clay can be attributed to the intercalated structure of layered silicates into the matrices. Although the K values do not considerably increase in 5 wt % with respect to the increase occurs for 10 wt % of clay, but it increases about 28 and 37% at 50°C for high density polyethylene– and polypropylene–clay nanocomposites, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
8.
In this research a new simple non‐attracting hard‐sphere equation is introduced. The equation meets the ideal gas and close‐packed limits and is in accordance with computer simulation data with reasonable accuracy. When this equation is used with the simpli‐fied‐perturbed‐hard‐chain theory equation of state, improvements on the calculation of vapour pressure and saturated liquid density of pure compounds are observed. For 35 pure compounds of different classes, the averages of absolute error are 3.31% and 4.20% for the calculation of vapour pressure and saturated liquid density, respectively. The respected errors for the original equation of state are 3.53% and 4.96%, respectively. Moreover, the use of the new hard‐sphere equation in place of the Carnahan‐Starling equation in the simplified‐perturbed‐hard‐chain theory equation of state, does not have any appreciable effect on the prediction of K factors in VLE calculations. 相似文献
9.
Faruk Civan 《Chemical engineering science》2008,63(24):5883-5886
This paper demonstrates that thermal conductivity of liquid paraffin hydrocarbons of different molecular weights can be correlated properly and conveniently using the Vogel-Tammann-Fulcher-Hesse equation. This approach is advantageous for applications of practical importance because it leads to a simpler effective correlation with fewer empirically determined parameters while providing twice better accuracy than a previous empirical correlation utilizing cubic-polynomial equations. This is illustrated by analyzing and correlating the thermal conductivity data of several liquid n-alkanes. 相似文献
10.
Chang‐An Wang Haoran Lu Zeya Huang Huimin Xie 《Journal of the American Ceramic Society》2018,101(3):1095-1104
Magnetoplumbite‐type LaMgAl11O19 ceramic has been proposed as one of promising candidates for the next generation thermal barrier coatings (TBCs) due to its low thermal conductivity. However, LaMgAl11O19 shows poor water‐resistance with significant weight loss at elevated temperatures in water‐containing atmosphere. In this work, we revealed that the essential reason for the poor water‐resistance of magnetoplumbite‐type LaMgAl11O19 ceramic is Mg2+ migration from the intrinsic site under moisture environment. And then an effective approach was proposed to improve its anti‐deliquescent property by completely substituting divalent alkaline earth ions Mg2+ with Zn2+. Finally, a panoscopic strategy was proposed to further lower thermal conductivity through co‐substituting La and Zn sites in LaZnAl11O19 with trivalent and divalent transition metal ions. The mechanism for the lowered thermal conductivity is due to the panoscopic approach, which providing all‐scale hierarchical architectures of phonon scattering mechanisms. The excellent anti‐moisture performance and ultralow thermal conductivity endow the LaZnAl11O19 based ceramics as a kind of promising candidates for advanced thermal barrier coatings. 相似文献
11.
12.
Zhenhua Wang Yonglai Lu Jun Liu Zhimin Dang Liqun Zhang Weimin Wang 《应用聚合物科学杂志》2011,119(2):1144-1155
In this article, nano‐zinc oxide (ZnO) filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated respectively, which are further compared with the traditional reinforcing fillers, such as carbon black and nano‐silica. Furthermore, influence of in‐situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent Bis‐(3‐thiethoxy silylpropyl)‐tetrasufide (Si69) on the nano‐ZnO filled composites is as well investigated. The results indicate that this novel reinforcing filler nano‐ZnO can not only perform well in reinforcing EPDM but can also improve the thermal conductivity significantly. In‐situ modification with Si69 can enhance the interfacial interaction between nano‐ZnO particles and rubber matrix remarkably, and therefore contribute to the better dispersion of filler. As a result, the mechanical properties and the dynamic heat build‐up of the nano‐ZnO filled composites are improved obviously by in‐situ modification, without influencing the thermal conductivity. In comparison with traditioanl reinforcing fillers, in‐situ modified nano‐ZnO filled composites exhibit the excellent performance in both mechanical (static and dynamic) properties and better thermal conductivity. In general, our work indicates that nano‐ZnO, as the novel thermal conductive reinforcing filler, is suitable to prepare elastomer products serving in dynamic conditions, with the longer expected service life. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
Youn Hee Kim Min Jung Kang Gun Pyo Park Sang Do Park Sang Bum Kim Woo Nyon Kim 《应用聚合物科学杂志》2012,124(4):3117-3123
This article investigates the effects of liquid‐type silane additives and organoclay as a solid‐type additive on the morphological, mechanical and thermal insulating properties of polyisocyanurate‐polyurethane (PIR‐PUR) foams. The organoclay likely acted as nucleating agents during the formation of PIR‐PUR foams. When the liquid silane additives and organoclay were added, the cell size and thermal conductivity of the PIR‐PUR foams appeared to be decreased. However, organoclay did not contribute to reduce the cell size distribution of the foam. PIR‐PUR foams synthesized with tetramethylsilane as a liquid‐type additive showed a smaller average cell size and lower thermal conductivity than that of PIR‐PUR foams synthesized with the other silane additives or with organoclay as a solid‐type additive. For the PIR‐PUR foam with organoclay/TEMS (1.5/1.5 php) mixture, cell size and thermal conductivity of the foam showed similar to the foam with TEMS. These results suggest that smaller cell size appears to be one of the major factors in the improvement of thermal insulation properties of the PIR‐PUR foams. Silane additives did not seem to have a strong effect on the flammability of the PIR‐PUR foams. However, heat resistance was more dominant for the foam with the organoclay at the higher temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
14.
采用两步法,以聚乙烯吡咯烷酮(PVP)为表面活性剂,制备了不同种类的纳米冷冻机油并对其分散稳定性进行了实验研究。采用Hot Disk热常数分析仪,测量了40℃下纳米冷冻机油(纳米材料为TiO2、Al2O3、Fe2O3、石墨和碳纳米管,体积分数为0.05%、0.1%、0.2%、0.5%、1%和2%)的热导率,分析研究了颗粒体积分数、粒径、材质以及表面活性剂等因素的影响。结果表明:纳米冷冻机油的热导率随着颗粒体积分数的提高而增大;相同体积分数下随着颗粒粒径的增大而减小,而相同粒径下又随着颗粒材质热导率的提高而增大;同时分散稳定性优的纳米冷冻机油热导率较高。基于纳米粒子的体积分数、粒径、团聚理论和布朗运动开发了纳米冷冻机油热导率预测模型,并与实验数据进行比较,发现预测值与90%的实验数据偏差在±3%以内,平均偏差1.6%。 相似文献
15.
Ali Vakilinejad Mohammed Al-Abri Hossein Bahmanyar Myo Tay Zar Myint 《Chemical Engineering Communications》2018,205(5):610-623
Modified transient plane source method has been applied for thermal conductivity measurements of three water-based nanofluids containing Al2O3, TiO2, and graphene nanoparticles. Experiments were conducted at different temperatures and concentrations. The effects of sort of nanoparticles, concentration, and diameter of nanoparticles as well as temperature were studied by comparing the experimental results with the predictions of ten preceding models. The overall performances of these models were compared in terms of percent error. Percent errors were observed in the current study ranging from vicinity of zero up to nearly 110% that belonged to Bruggeman model in predicting the thermal conductivity ratio of graphene/water nanofluids. All ten models performed acceptably in calculating thermal conductivity ratio of Al2O3 nanofluids with the maximum percent error of 2.16%. Four correlations are proposed based on the experimental results of this work three of which are special to each nanofluid and the fourth one is overall. These models succeeded to predict the thermal conductivity ratio of the studied nanofluids with considerably lower percent errors which was maximum 5.19% observed in predicting the thermal conductivity ratio of graphene/water nanofluid. 相似文献
16.
精确计算不同温度下液体导热系数的新方法 总被引:3,自引:2,他引:3
根据液体微观结构的特点和热传导机理,发展了一种计算液体导热系数的新方法。对273种物质6271个数据点的计算结果表明,该方法在很宽的温度范围(熔点到沸点以上温度)内具有很高的准确度,平均误差仅0.292%,计算精度优于文献方法。 相似文献
17.
Masatoshi Hasegawa Noriaki Suyama Naoyuki Shimoyama Hisashi Aoki Takehiko Nunokawa Tohru Kimura 《Polymer International》2011,60(8):1240-1247
Polybenzoxazole (PBO) model compounds consisting of benzoxazole mesogenic units linked with long alkyl chains via ether or ester groups were prepared from flexible dicarboxylic acids with two kinds of bis(o‐aminophenol)s, i.e. 4,4′‐diamino‐3,3′‐dihydroxybiphenyl (p‐HAB) and 3,3′‐diamino‐4,4′‐dihydroxybiphenyl (m‐HAB). The results revealed that the use of p‐HAB completely erased the thermotropic liquid crystallinity and that the m‐HAB‐based ether‐linked model compound was much more advantageous for the formation of a stable liquid crystal phase than the corresponding ester‐linked one. However, the relevant high‐molecular‐weight PBOs showed quite opposite results. Only the m‐HAB‐based ester‐linked C10 PBO system showed a liquid crystal‐like texture among various semi‐aliphatic PBO systems examined. A very high thermal conductivity of 1.79 W m?1 K?1 along the thickness direction for the m‐HAB‐based ester‐linked C10 PBO film was achieved by heat treatment in the liquid crystalline state under a strong magnetic field of 10 T. Copyright © 2011 Society of Chemical Industry 相似文献
18.
The concept of aqueous two‐phase polymerization and a new polymerization method for the preparation of water‐soluble polymers are presented. The phase diagram of poly(acrylamide) (PAAm)‐poly (ethylene glycol) (PEG)‐water two‐phase system was measured by the gel permeation chromatography (GPC). The aqueous two‐phase of PAAm‐PEG‐water system can be easily formed. The critical concentration of phase separation was affected by the molecular weight of PEG. The aqueous two‐phase polymerization of acrylamide (AAm) has been successfully carried out in the presence of PEG by using ammonium persulfate (APS) as the initiator. The polymerization behaviors with varying concentration of AAm, initiator and PEG, the polymerization temperature, the molecular weight of PEG, and emulsifier types were investigated. The activation energy of aqueous two‐phase polymerization of AAm was 132.3 kJ/mol. The relationship of initial polymerization rate (Rp0) with APS and AAm concentrations was Rp0 ∝ [APS]0.72 [AAm]1.28. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
19.
Murni M. Ahmad Steinar Hauan Todd M. Przybycien 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2010,85(12):1575-1587
BACKGROUND: Aqueous two‐phase extraction (ATPE) has many advantages as an efficient, inexpensive large‐scale liquid–liquid extraction technique for protein separation. However, the realization of ATPE as a protein separation technology at industrial scales is rather limited due to the large, multidimensional design space and the paucity of design approaches to predict phase and product behavior in an integrated fashion with overall system performance. This paper describes a framework designed to calculate suitable flowsheets for the extraction of a target protein from a complex protein feed using ATPE. The framework incorporated a routine to set up flowsheets according to target protein partitioning behavior in specific ATPE systems and a calculation of the amounts of phase‐forming components needed to extract the target protein. The thermodynamics of phase formation and partitioning were modeled using Flory‐Huggins theory and calculated using a Gibbs energy difference minimization approach. RESULTS: As a case study, suitable flowsheets to recover phosphofructokinase from a simple model feedstock using poly(ethylene glycol)‐dextran (PEG6000‐DxT500) and poly(ethylene glycol)‐salt (PEG6000‐Na3PO4) two‐phase systems were designed and the existence of feasible solutions was demonstrated. The flowsheets were compared in terms of product yield, product purity, phase settling rate and scaled process cost. The effect of the mass flowrates of phase‐forming components on product yield and purity was also determined. CONCLUSION: This framework is proposed as a basis for flowsheet optimization for protein purification using ATPE systems. Copyright © 2010 Society of Chemical Industry 相似文献