首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multicast delivery has become more and more important in modern multimedia applications. VoD and videoconferences are two examples. Multimedia integrates texts, audios, videos and still images in a variety of applications. The data in this media can be time critical in terms of maximum delay and delay jitter. In order to satisfy all these applications, the network needs to have an efficient multicasting mechanism using the true capability of ATM networks. In the native solution, a separate connection can be set up from the source to each group node, also called full connectivity. The full connectivity needs O(N/sup 2/) connections, where N is the number of nodes in a group. Instead, we can have one tree spanning all the participants. Multicast using a single shared tree has become the trend. In this paper, we propose a bi-directional multipoint-to-multipoint multicast scheme, a SD channel-based Multicast with Round-robin Access (SDRAM), for ATM networks, which uses a single tree for a multicast group consisting of multiple participants that are either senders, receivers, or a mix of both. We first discuss why the resequencer model will not be suitable for multimedia traffic, then propose the SDRAM scheme to solve the problems, and finally compare our scheme with the resequencer model through simulation. Results show the mean queuing delays and mean inter-PDU delays of our scheme are not sensitive to mean PDU size while the mean queuing delays and mean inter-PDU delays of the resequencer scheme are very sensitive to mean PDU size.  相似文献   

2.
A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR, multicast sessions are created and released only by source nodes. In each multicast session process, the source node keeps a list of intermediate nodes and destinations, which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing, the shortest virtual hierarchy routing tree is constructed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes, which are computed through the tree. No control packet is transmitted in the process of multicast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.  相似文献   

3.
An important problem in both wireless and wired communication networks is to be able to efficiently multicst information to a group of network sites. Multicasting reduces the transmission overhead of both wireless and wired networks and the time it takes for all the nodes in the subset to receive the information. Since transmission bandwidth is a scarce commodity especially in wireless networks, efficient and near minimum-cost multicast algorithms are particularly useful in the wireless context. In this paper, we discuss methods of establishing efficient and near minimum-cost multicast routing in communication networks. In particular, we discuss an efficient implementation of a widely used multicast routing method which can construct a multicast tree with a cost no greater than twice the cost of an optimal tree. We also present two efficient multicast tree constructions for a general version of the multicast routing problem in which a network consists of different classes of nodes, where each class can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other classes. Because of their efficient running times, these multicast routing methods are particularly useful in the mobile communication environments where topology changes will imply recomputation of the multicast trees. Furthermore, the proposed efficient and near minimum-cost multicast routing methods are particularly suited to the wireless communication environments, where transmission bandwidth is more scarce than wired communication environments.Partially supported by NSF/LaSER under grant number EHR-9108765, by LEQSF grant number 94-RD-A-39, by NASA under grant number NAG 5-2842.  相似文献   

4.
Multicast is an efficient method for transmitting the same packets to a group of destinations. In energy-constrained wireless ad hoc networks where nodes are powered by batteries, one of the challenging issues is how to prolong the multicast lifetime. Most of existing work mainly focuses on multicast lifetime maximization problem in wireless packet loss-free networks. However, this may not be the case in reality. In this paper, we are concerned with the multicast lifetime maximization problem in unreliable wireless ad hoc networks. To solve this problem, we first define the multicast lifetime as the number of packets transmitted along the multicast tree successfully. Then we develop a novel lifetime maximization genetic algorithm to construct the multicast tree consisting of high reliability links subject to the source and destination nodes. Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.  相似文献   

5.
Establishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area asynchronous transfer mode (ATM) network, can be modeled as the NP-complete Steiner problem in networks. In this paper, we introduce and evaluate two distributed algorithms for finding multicast trees in point-to-point data networks. These algorithms are based on the centralized Steiner heuristics, the shortest path heuristic (SPH) and the Kruskal-based shortest path heuristic (K-SPH), and have the advantage that only the multicast members and nodes in the neighborhood of the multicast tree need to participate in the execution of the algorithm. We compare our algorithms by simulation against a baseline algorithm, the pruned minimum spanning-tree heuristic that is the basis of many previously published algorithms for finding multicast trees. Our results show that the competitiveness (the ratio of the sum of the heuristic tree's edge weights to that of the best solution found) of both of our algorithms was, on the average, 25% better in comparison to that of the pruned spanning-tree approach. In addition, the competitiveness of our algorithms was, in almost all cases, within 10% of the best solution found by any of the Steiner heuristics considered, including both centralized and distributed algorithms. Limiting the execution of the algorithm to a subset of the nodes in the network results in an increase in convergence time over the pruned spanning-tree approach, but this overhead can be reduced by careful implementation  相似文献   

6.
Multicast routing and wavelength assignment in multihop optical networks   总被引:1,自引:0,他引:1  
This paper addresses multicast routing in circuit-switched multihop optical networks employing wavelength-division multiplexing. We consider a model in which multicast communication requests are made and released dynamically over time. A multicast connection is realized by constructing a multicast tree which distributes the message from the source node to all destination nodes such that the wavelengths used on each link and the receivers and transmitters used at each node are not used by existing circuits. We show that the problem of routing and wavelength assignment in this model is, in general, NP-complete. However, we also show that for any given multicast tree, the wavelength assignment problem can be solved in linear time.  相似文献   

7.
Mobile ad hoc networks are recognized by their abilities to form, sustain, and deform networks on‐the‐fly without the need for any pre‐established and fixed infrastructures. This wireless multi‐hop technology requires adaptive networking protocols with low control overhead and low power consumption to operate efficiently. Existing research so far are mainly concerned with unicast routing for ad hoc mobile networks. There is a growing interest in supporting multicast communication in an ad hoc mobile environment. In this paper, the associativity‐based ad hoc multicast (ABAM) routing protocol is proposed. The concept of association stability is utilized during multicast tree discovery, selection, and reconfiguration. This allows routes that are long‐lived to be selected, thereby reducing the frequency of route reconstructions. ABAM employs a localized route reconstruction strategy in response to migrations by source, receiver, and tree nodes. It can repair an affected subtree via a single route reconstruction operation. ABAM is robust since the repair can be triggered by a node in the tree or by the migrated node itself. ABAM is also capable of handling multicast group dynamics when mobile hosts decide to join and leave an existing multicast group. Our simulation results reveal that under different mobility scenarios and multicast group size, ABAM has low communication overhead and yields better throughput performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
In general topology networks, routing from one node to another over a tree embedded in the network is intuitively a good strategy, since it typically results in a route length of O(logn) links, n being the number of nodes in the network. Routing from one node to another over a ring embedded in the network results in route length of O(n) links. However, in group (many-to-many) multicast, the overall number of links traversed by each packet, i.e., the networks elements on which resources must possibly be reserved, is typically O(N) for both tree and ring embedding, where N is the size of the group. The paper focuses on tree versus ring embedding for real-time group multicast in which all packets should reach all the nodes in the group with a bounded end-to-end delay. Real-time properties are guaranteed by the deployment of time-driven priority in network nodes. In order to have a better understanding of the nontrivial problem of ring versus tree embedding, we consider static, dynamic and adaptive group multicast scenarios. Tree and ring embedding are compared using different metrics. The results are interesting and counterintuitive, showing that embedding a tree is not always the best strategy. In particular, dynamic and adaptive multicast on a tree require a protocol for updating state information during operation of the group. Such a protocol is not required on the ring where the circular topology and implicit token passing mechanisms are sufficient. Moreover, the bandwidth allocation on the ring for the three multicast scenarios is O(N), while on a general tree it is O(N) for the static multicast scenario and O(N/sup 2/) for the dynamic and adaptive multicast scenarios.  相似文献   

9.
Virtual Source Based Multicast Routing in WDM Optical Networks   总被引:2,自引:0,他引:2  
Wavelength-division multiplexed (WDM) networks using wavelength-routing are considered to be potential candidates for the next generation wide-area backbone networks. Multicasting is the ability to transmit information from a single source node to multiple destination nodes and is becoming an important requirement in high-speed networks. As WDM technology matures and multicast applications become increasingly popular, supporting multicast routing at the WDM layer becomes an important and yet a challenging topic. This paper concerns with the problem of optical multicast routing in WDM networks. A few nodes in the network may have wavelength conversion and/or splitting capabilities. In this paper, a new multicast tree construction algorithm is proposed. This algorithm is based on a concept called virtual source. A virtual source is a node having both the splitting and wavelength conversion capabilities. By exploiting the presence of virtual source nodes, the proposed algorithm achieves improved performance. To further improve the performance, the algorithm assigns priorities to nodes based on their capabilities. The effectiveness of the proposed algorithm is verified through extensive simulation experiments.  相似文献   

10.
This paper presents a protocol and design for concurrent and reliable group multicast (many-to-many) from bursty data sources in general networks. In a group multicast, any node can be a multicast source and multiple nodes may start to multicast simultaneously, i.e., an asynchronous access to the network. The reliable multicast protocol presented is window based with a combined sender and receiver initiation of the recovery protocol. In reliable multicasting the necessary requirement is to ensure that data is received correctly by all the active members of the multicast group. The approach taken is to combine the multicast operation with the internal flow control. As a result, it is possible to provide: (1) congestion-free multicast routing with a single and immediate acknowledgment message to the sender. Furthermore, in every multicast, (2) a node can access all the capacity allocated to its group with no delay, however, if several nodes are active in the same group, then the capacity will be shared fairly. In addition, (3) each sender in the multicast group uses a single timer, and (4) a node can become active or inactive in a transparent fashion, i.e., there is no need to explicitly notify the members of the group. A multiple criteria optimization study of the bandwidth allocation to each multicast group is presented. The optimization problem has two min-max objective functions: (1) for delay, which is caused by the number of links needed to connect the group, and (2) for congestion, which is caused by sharing a link among multiple multicast groups. The bandwidth allocation among multicast groups sharing the same link are further optimized using the max-min fairness criterion  相似文献   

11.
Despite significant research in mobile ad hoc networks, multicast still remains a research challenge. Recently, overlay multicast protocols for MANET have been proposed to enhance the packet delivery ratio by reducing the number of reconfigurations caused by nongroup members' unexpected migration in tree or mesh structure. However, since data is delivered by using replication at each group member, delivery failure on one group member seriously affects all descendent members' packet delivery ratio. In addition, delivery failure can occur by collision between numbers of unicast packets where group members densely locate. In this paper, we propose a new overlay multicast protocol to enhance packet delivery ratio in two ways. One is to construct a new type of overlay data delivery tree, and the other is to apply a heterogeneous data forwarding scheme depending on the density of group members. While the former aims to minimize influence of delivery failure on one group member, the latter intends to reduce excessive packet collision where group members are densely placed. Our simulation results show distinct scalability improvement of our approach without regard to the number of group members or source nodes.  相似文献   

12.
Multicasting is an efficient data transmission approach for group communication applications in multi-channel multi-radio wireless mesh networks. In this paper we have studied the problem of accepting on-line multicast requests, which is quite important for supporting multimedia applications. Our proposed algorithm investigates the acceptance of an arrived call in two phases. In the first phase, a loop-free mesh backbone is constructed. In this mesh, the set of possible parents of each node is limited to the neighbors that are one hop closer to the source node. The neighbors with the same distance from the source node are also acceptable under the circumstance that two neighboring nodes cannot be the possible parents of each other. Next, a sub-optimal mathematical model has been proposed for tree construction over the obtained mesh. The derived multicast trees utilize the minimum amount of bandwidth; are load-balanced; and exploit wireless broadcast advantage. The results show that the proposed algorithm improves the rate of multicast call acceptance by 40% on average compared to previous algorithms in a short running time.  相似文献   

13.
程连贞  刘凯  张军  宋学贵 《电子学报》2007,35(6):1050-1055
为了解决低轨卫星IP网络中现有特定源组播算法的信道资源浪费问题,本文提出了一套新的特定源组播算法,即基于核心群的特定源组播算法(CSSM)和加权的CSSM算法(w-CSSM).CSSM算法以源节点作为初始核心群,通过核心群和剩余组成员的最短路径方法逐步扩展直至整棵组播树构建完成,所得的树代价最小,从而大大提高了网络的带宽利用率和传输效率.在w-CSSM算法中,加权因子可以自适应调整以适度增大树代价、降低端到端传播时延,以支持某些有严格端到端时延要求的实时组播业务.通过与低轨卫星IP网络中典型特定源组播算法MRA的仿真比较,可以看出CSSM和w-CSSM算法的树代价性能比MRA有较大改善,不过端到端传播时延略高.  相似文献   

14.
基于传输路径质量的无线mesh网络可靠多播   总被引:1,自引:0,他引:1  
提出了一种可靠多播网(RM)模型,探讨了无线链路和节点可靠性对多播路径选择的影响。首先,建立了无线链路的相关性和多播路径的可靠性模型,并提出了多播传输的可靠性判据;同时,结合首树算法和多路径树算法提出了构造可靠多播网的算法。可靠多播网具有并行的多播路径,通过在多播源节点和目的节点之间选择多播链路和节点构成了可靠的多播路径,提供了多播路径的"负荷分担"和"热备份"功能,从而支持了多播业务可靠性。  相似文献   

15.
A Mobile IP multicast prototype that integrates a label-switching wireless asynchronous transfer mode, the mobile core-based multicast architecture, and an Internet multicast infrastructure is presented. MCOM creates multiple core-based layer 2 multicast trees that are independently established in member networks. They are interconnected via the Internet using layer 3 multicast routing. Gateways on the border of the Internet and wireless ATM networks convert ATM multicast traffic to suitable IP packets as well as converting from IP packets to ATM cells for MCOM. To solve the cell interleaving problem that results, ATM block transfer/immediate transmission capability is reasonably modified. Additionally, class-based block buffer management for ATM multicast connections is built into wireless ATM switches for soft quality of service control. Dynamic group management, multicast channel rerouting, and reliable multicasting are also studied in relation to existing Internet protocols like Mobile IP, Internet group management protocols, and multicast routing protocols  相似文献   

16.
The paper addresses the issue of minimizing the number of nodes involved in routing over a multicast tree and in the maintenance of such a tree in a datagram network. It presents a scheme where the tree routing and maintenance burden is laid only upon the source node and the destination nodes associated with the multicast tree. The main concept behind this scheme is to view each multicast tree as a collection of unicast paths and to locate only the multicast source and destination nodes on the junctions of their multicast tree. The paper shows that despite this restriction, the cost of the created multicast trees is not necessarily higher than the cost of the trees created by other algorithms that do not impose the restriction and therefore require all nodes along the data path of a tree to participate in routing over the tree and in the maintenance of the tree  相似文献   

17.
This paper shows how to provide an adaptive real-time group multicast (many-to-many) communication service. Adaptive means that the number of nodes that transmit to the multicast group is continuously changing. In order to meet deterministic quality-of-service (QoS) requirements of a real-time group multicast, some communication resources are reserved. We show (1) how bandwidth is reserved for each multicast group and (2) how an active source can dynamically share the bandwidth allocated to this multicast group with other active group members. Quality-of-service support for a real-time multicast group is based on time-driven priority. In this scheme the time is divided into time frames of fixed duration, and all the time frames are aligned by using a common global time reference, which can be obtained from the Global Positioning System. Bandwidth is allocated to a multicast group as a whole, rather than individually to each user. The allocation is done by reserving time intervals within time frames in a periodic fashion. This type of allocation raises two problems that are studied in this paper: (1) scheduling: how time intervals are reserved to each multicast group and (2) adaptive sharing: how the active (transmitting) participants can dynamically share the time intervals that have been reserved for their multicast group. The proposed approach is based on the embedding of multiple virtual rings, one for each multicast group. By using the virtual rings, it is simple to route messages to all the participants while minimizing the bound on the buffer sizes and queueing delays. The final part of this paper introduces a scalable growth of the multicast group by adding multiple subtrees to the virtual ring  相似文献   

18.
Multicast services, assisted by special hardware, are being considered as a part of high-speed wide-area networks (WANs) in order to support new generations of multiuser applications. The paper describes a multicast service application for high-speed WANs which is capable of exploiting multicast hardware. Indeed, this research was conducted in the context of the spanning tree hardware structure of PARIS and of plaNET, the pioneering broadband experimental networks that predated ATM. The results of this research were also included in IBM's ATM, called networking broadband services (NBBS). We achieve modularity and low cost by assigning to distinct components the separate problems of: 1) naming groups; 2) finding group members in a network; 3) configuring multicast hardware; 4) delivering multicast messages in sequence. This modularity enables, for example, the multicast, on one hand, to a group to which the user initiates the joining (formed by using 1 and 2 above) and, on the other hand, to groups computed by the source. We give the overall organization of our service and then describe in detail the methods used to solve the first two of the subproblems.  相似文献   

19.
杨海 《电讯技术》2021,61(5):621-626
针对无线网络中资源受限的组播路由问题,考虑网络节点的节点度限制和网络链路的带宽约束,以最小化组播路由开销为目标,提出了一种二进制编码方式的基于灰狼优化算法的组播路由策略.在给定的网络拓扑下,基于灰狼优化算法的组播路由策略可以迅速找到一棵包含源和目的节点的最小开销组播树.仿真结果表明,相比于遗传算法,所提出的基于灰狼优化...  相似文献   

20.
基于网络编码的双路径组播树生成算法   总被引:1,自引:1,他引:0       下载免费PDF全文
曲志坚  纪越峰  柏琳  王肖玲  邢焕来 《电子学报》2010,38(10):2456-2459
 为了将网络编码技术引入到全光组播网络中,提出了能够在多项式时间完成的基于网络编码的双路径组播树生成算法.该算法主要包括两大步骤:首先,从给定的组播网络中根据节点间度平衡的原则为源节点和每个目的节点之间确定一条有向路径,从而建立一棵传统有向树并保证有向树中任意节点的出度尽可能小,减少节点之间的关联性;其次,在所建立的传统有向树的基础上,从每一个目的节点到源节点根据冲突回溯原则建立源节点和每个目的节点之间的第二条路径,并保证源节点到任意目的节点间的两条路径为分离路径.算法中包含的约束原则能够保证所建立的双路径组播树包含最少的编码节点,从而使得所建立的组播树支持光域网络编码高效率实现,实现基于网络编码的全光组播并提升全光组播的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号