首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
基于增压富氧燃烧锅炉对流受热面的动态特性缺乏理论研究,以一台300 MW燃煤锅炉的再热系统为研究对象,分别在空气气氛下以及O2/CO2=30/70气氛不同压力富氧条件(0.1MPa、1MPa)下,利用Fluent软件进行了蒸汽入口温度、烟气入口温度、蒸汽入口流量及烟气入口速度扰动的数值模拟实验。结果表明:空气气氛、常压富氧及增压富氧气氛下入口蒸汽温度扰动时,再热蒸汽出口的温度变化幅度依次减小;入口蒸汽量、烟气温度和烟气速度扰动时,再热蒸汽出口的温度变化幅度依次增大,相应的动态响应时间都依次减少;与Matlab实验结果相比,数值模拟模型更加准确地反映对流受热面工质流动及换热情况,模拟结果具有更高的精度和通用性。  相似文献   

2.
以300 MW燃煤发电机组为研究对象,在不同烟气流速条件下,建立高温过热器优化模型。以单位时间内相同换热效果下高温换热器投资总费用最低为目标,得到增压富氧燃烧气氛下高温过热器的最佳设计结构和理想烟气流速。通过设置4种不同扰动工况下的边界条件,研究高温过热器蒸汽出口温度和动态响应时间的变化规律。结果表明:与空气气氛相比,增压富氧气氛下高温过热器蒸汽入口流量、烟气入口流量、蒸汽入口温度、烟气入口温度分别增加10%时,汽温响应时间分别缩短11.88、7.92、10.89、6.93 s,蒸汽出口温度变化量分别减少0.40、0.33、0.20、5.34 K。  相似文献   

3.
富氧燃烧技术又称空气分离/烟气再循环技术,是一种既能直接捕集高浓度C02,又能综合控制燃煤污染物排放的新一代洁净煤发电技术。在富氧燃烧条件下,对再热汽温扰动因素进行研究具有重要的意义,根据再热蒸汽换热的相关平衡方程,通过数学推导得出了再热汽温与其影响因素之间关系的数学模型。针对一台300 MW锅炉,分别进行了常规空气、常压富氧以及1 MPa富氧气氛下的实例计算研究,并对计算结果进行分析,得到了一些有价值的结论,可以为富氧燃烧锅炉的控制系统设计和优化运行提供参考。  相似文献   

4.
廖海燕 《中国电力》2015,48(2):7-13
为了获得适用于富氧燃烧锅炉的设计方法,以200 MW 富氧燃烧锅炉为研究对象,通过理论计算得出:高烟温区段,富氧燃烧烟气中三原子气体浓度升高,导致辐射传热增强,受热面传热量要高于空气燃烧气氛。而在低烟温区段,烟气量减少导致流速降低,对流传热减弱,传热量小于空气燃烧气氛;在分析富氧燃烧锅炉传热特性基础上,提出了富氧燃烧锅炉烟气通流截面积、各换热面积的设计优化方法。相比空气气氛,在26%氧浓度条件下,富氧燃烧干循环锅炉各受热面烟气通流截面积减少15%~21%,湿循环减少13%~24%,干循环锅炉受热面减少9%~32%,湿循环减少7%~35%。富氧气氛燃烧条件下锅炉烟气流速能够达到锅炉设计规范要求,各受热面传热量与空气燃烧传热量基本保持一致。  相似文献   

5.
富氧燃烧方式下烟气对受热面传热特性影响的数值研究   总被引:3,自引:0,他引:3  
富氧燃烧方式下,烟气中70%以上均为CO2,这与常规锅炉燃烧产生的以N2为主的平均烟气成分有很大差异。为了研究烟气成分变化带来的换热系数的变化规律,采用数值模拟的方法对富氧燃烧方式下烟气的传热特性进行了研究,并与空气气氛下进行对比。结果表明,富氧气氛下换热系数较空气气氛下有显著提高。  相似文献   

6.
富氧燃烧循环流化床是一种新型的碳捕集技术,具有广泛的应用前景。O2/CO2气氛下锅炉受热面的布置与热负荷的分配是阻挠富氧燃烧循环流化床进一步示范的关键问题。本文分别采用Johnsson模型和颗粒团更新模型对350 MW机组循环流化床锅炉进行一维建模,对氧体积分数为30%的富氧燃烧循环流化床锅炉进行了耦合汽水系统的总体概念设计,并与空气燃烧的同等级循环流化床锅炉尺寸进行了对比。结果表明:富氧燃烧循环流化床锅炉的排烟热损失大大减小,设计锅炉热效率可达94.18%;富氧燃烧循环流化床锅炉布风板面积、炉膛截面积以及尾部烟道面积均比空气燃烧循环流化床锅炉大幅减小,但需要增设外置床换热器来吸收热负荷。本研究对富氧燃烧循环流化床锅炉的进一步放大具有借鉴意义。  相似文献   

7.
利用自建的SO2测量系统,对富氧气氛下生物质/煤恒温混燃过程进行了SO2测量实验,深入研究了气氛、掺混比、温度、煤种及生物质种类等因素对SO2释放的影响规律。结果表明:生物质/煤混合样品在富氧气氛和空气气氛下的SO2瞬时生成曲线形成1个剧烈释放峰和1个平缓的释放峰;在21%氧体积分数下,富氧气氛下的SO2双峰和总释放量均小于空气气氛,随着氧体积分数的升高,SO2总释放量增大;随着玉米芯掺混比的增加,SO2总释放量均呈下降趋势;随着温度升高,SO2总释放量增大,温度从900℃增加到1 000℃时,SO2总释放量的增加幅度大于从800℃增加到900℃下的情况;阳泉无烟煤、塔山烟煤、印尼褐煤3种煤在掺混玉米芯后,SO2总释放量均有不同程度的降低;阳泉无烟煤掺混3种生物质后的SO2瞬时生成曲线2个释放峰值均有所降低,SO2总释放量均明显降低,但降低程度有所不同。  相似文献   

8.
富氧气氛下由于烟气量的减少以及锅炉热效率提高所带来的燃料量的减少使得烟气中的粉尘量得到一定的降低,为电站锅炉水平烟道烟气流速的提高带来了可能.增加烟气流速虽然强化了传热,但同时也增大了风机的电耗.采用基于初投资分摊费用和经营成本的动态费用分析法对不同烟气流速下对流受热面的换热进行经济性分析.计算结果表明,最佳工况比空气燃烧方式下的烟道更加紧凑,但是流速超过一定范围之后带来的引风机耗电量的增加超过了流速增加所带来的强化换热的收益,因此是不经济的.采用动态费用法为富氧燃烧方式下对流受热面最佳流速的选择提供依据,对新型富氧燃烧锅炉换热器的设计具有一定的指导意义.  相似文献   

9.
为研究富氧燃烧与空气燃烧锅炉之间的辐射传热特性差异,并为设计或改造新型富氧燃烧系统提供所需的理论指导,对2种燃烧方式下的炉膛流场与传热分布特性进行了数值模拟研究。首先对富氧燃烧数值模拟采用改进灰色气体加权和(WSGG)模型计算气体吸收系数的必要性进行了探讨,并将Johansson WSGG模型结合进入燃煤锅炉的CFD模型框架内,使CFD数值模型适用于富氧燃烧的辐射传热计算。在此基础上对某330 MW机组锅炉分别采用干、湿烟气再循环富氧燃烧方式及空气燃烧方式的炉膛流场与传热分布特性等进行了对比分析。结果表明:在锅炉煤量、入口气体质量流量和氧量皆相同情况下,不同燃烧方式间燃烧烟气成分及物性的差异使富氧燃烧与空气燃烧锅炉在流场、温度与炉膛传热分布等方面皆呈现出较明显的差异;富氧燃烧烟气中所富含的CO2和H2O的比热容高于N2,使采用湿烟气循环方式富氧燃烧锅炉炉膛的整体温度和吸热量明显低于空气燃烧;同时,由于CO2的密度高于N2,富氧燃烧锅炉的整体流速低于空气燃烧锅炉,并影响了炉内的温度与传热分布。在设计富氧燃烧系统或改造现有空气燃烧系统时应考虑富氧燃烧与空气燃烧锅炉在炉膛流场与传热方面的差异,合理安排锅炉的传热分布,避免或减少锅炉受热面的改动。  相似文献   

10.
利用实际气体方程对3种气氛(空气,21O2/79CO2,30O2/70CO2)、两类颗粒(Geldart B和Gel-dart D),在温度范围20~1 000℃,压力范围0.1~4.0 MPa下,计算分析了气氛、粒径、压力和温度对临界流化速度Umf的影响。计算结果表明:随着压力的升高,Umf不断减小;随着温度的升高,Umf先增大后减小,且床层压力越大,达到峰值所需的温度越高。富氧气氛下Umf比空气下小,且粒径越大,Umf越小。模型计算与实验结果吻合较好,为增压富氧气氛下Umf的计算提供了参考。  相似文献   

11.
彭龙飞  赵星海  辛国华 《黑龙江电力》2013,35(3):220-223,228
为了研究煤粉锅炉的传热特性,控制燃煤污染物排放,阐述了600 MW四角切圆煤粉锅炉炉内的流动、传热与燃烧过程的数值模拟方法,通过Gambit软件建立炉膛的三维结构及网格生成,在FLUENT软件中选择合理的数学模型,分别进行了空气气氛和富氧气氛下炉内煤粉燃烧的数值模拟过程。模拟结果表明:O2/CO2气氛下,CO2具有较高的比热容,炉膛内烟气的蓄热能力及着火热增加,炉膛整体温度下降,火焰中心上移;随着氧气浓度的提高,煤粉的燃烧得到强化,炉内温度升高,炉内高温区变大,火焰中心逐渐下移,有利于煤粉的着火和燃烧。  相似文献   

12.
介绍了O2/CO2燃烧方式的技术特点,采用ASME PTC 4-1998中计算锅炉热效率的热损失法对某电站300 Mw机组锅炉在O2/CO2和空气气氛下的各项热损失和锅炉热效率进行了计算比较.结果表明,采用O2/CO2的富氧燃烧技术可明显提高锅炉热效率,而且烟气中高浓度的CO2降低了分离回收CO2的成本.另外,通过对比不同氧气浓度下的锅炉热效率,表明采用O2/CO2燃烧方式时,O2的容积百分数不宜大于30%.  相似文献   

13.
采用加压/常压富氧燃烧循环流化床技术时,随着炉膛入口平均氧浓度和压力的升高,烟气体积不断减小,为确保一定的炉膛空截面烟气速度,炉膛横截面积需相应减小,导致炉膛布置受热面的空间减小,使炉膛温度控制的问题更加突出;同时,若锅炉各受热面的布置方式不当,也会导致部分受热面的传热温差不合理,不利于锅炉的初投资和正常运行。文中进行75t/h工业规模加压/常压富氧燃烧循环流化床锅炉的方案设计,提出富氧燃烧条件下循环流化床锅炉灰平衡和烟气成分的计算方法,着重分析炉膛入口平均氧浓度和压力对烟气循环倍率、锅炉结构、外置式换热器布置和锅炉各受热面吸热量分配等的影响规律。在加压/常压富氧燃烧条件下,随着炉膛入口平均氧浓度和压力的升高,可通过拔高炉膛、增设外置式换热器、屏式过热器等对锅炉各受热面吸热份额进行调整,使锅炉各受热面均在合理的参数范围内运行。  相似文献   

14.
在干、湿烟气再循环方式下,建立采用空气启动方式的富氧燃烧循环流化床锅炉助燃气体动态计算模型和烟气成分动态变化计算模型。基于实际气体的P-R状态方程,采用偏离函数法建立空气分离单元和CO_2压缩纯化单元运行能耗计算模型。在此基础上,对循环流化床锅炉富氧燃烧与CO_2捕集发电机组的运行能耗影响因素进行定量分析计算,得到氧气纯度、氧气浓度、过量氧气系数、锅炉漏风系数及不同烟气再循环方式对发电机组运行能耗的影响。  相似文献   

15.
利用恒温热重及NO监测装置,进行了富氧气氛下生物质/煤恒温混燃实验,研究了不同气氛、掺混比、煤种、温度及生物质种类下生物质/煤富氧燃烧特性及NO释放规律,为生物质/煤富氧燃烧的实际应用提供一定的参考。结果表明:气氛变化对挥发分析出燃烧段的影响很小。在21%O2浓度下,富氧气氛相比空气气氛,样品燃烬时刻略有延迟,NO释放量减小。随着O2浓度升高,样品的平均失重率增大,NO释放量增大。掺混玉米芯后,样品燃烬时刻明显提前,且随着玉米芯掺混比的增加,玉米芯对煤粉燃烧促进作用增强,NO释放量呈下降趋势。随着煤阶降低,玉米芯对煤的促燃作用减小,3种煤在掺混玉米芯后,NO释放量均有不同程度的降低。随温度升高,样品燃烬时刻缩短,NO释放量增大。掺烧3种生物质后,样品燃烬时刻均明显提前,NO释放量均有下降。  相似文献   

16.
为研究富氧气氛下生物质与煤矸石混合试样在循环流化床中燃烧污染物排放特性,利用36 kW/h循环流化床试验台,分别在空气、21%O_2/CO_2、30%O_2/CO_2和40%O_2/CO_2气氛下进行生物质与煤矸石的混合燃烧试验,考察燃烧气氛和生物质含量对污染物排放和炉内温度的影响。结果显示:21%O_2/CO_2气氛下较空气气氛下烟气中的NO和SO_2排放量更低、CO排放量更高,相同高度下炉膛温度更低;在O_2/CO_2气氛下,随着氧气浓度的提高,烟气中NO和SO_2排放量逐渐升高,相同高度下炉膛温度逐渐升高;在相同气氛下,随着生物质含量的增加,CO排放量逐渐升高,SO_2排放量逐渐降低,炉膛中下部温度逐渐升高、中上部温度逐渐降低。  相似文献   

17.
张家元  龚婷 《电力学报》2014,(3):257-262,266
针对某企业220 t/h高炉煤气锅炉在实际运行中存在着燃烧不稳定、热效率低等问题,利用企业富余的氧气资源,开发了高炉煤气锅炉富氧燃烧技术。采用Fluent流体力学软件对燃烧器内空气和氧气预混过程的速度场和浓度场进行了数值模拟,基于正交优化仿真实验对燃烧器结构进行了优化设计。并在实炉上对富氧前后的燃烧状况进行了热态燃烧试验,结果表明通过富氧燃烧技术改造后,锅炉运行热效率和燃烧的稳定性能明显提高。  相似文献   

18.
以300 MW富氧煤粉燃烧锅炉机组为研究对象,建立了四分仓回转式空气预热器的数学模型,并基于一体化仿真平台,建立了仿真模型。通过漏风扰动试验,分析了B-MCR工况下锅炉主要运行参数的变化规律。结果表明:随着四分仓回转式空气预热器漏风率的增大,四分仓出口排烟温度下降,一次再循环烟气和氧气温度上升;炉内绝热燃烧温度升高和三原子气体发射率增大,使水冷壁辐射换热量增多;主蒸汽量增多,主汽压力升高,主汽温度下降,不但影响机组的经济性,也威胁着机组的安全稳定运行。因此,减小四分仓回转式空气预热器漏风对于富氧煤粉燃烧锅炉具有重要意义。  相似文献   

19.
富氧燃烧循环流化床锅炉炉内传热特性   总被引:2,自引:1,他引:1  
针对富氧燃烧循环流化床锅炉(circulating fluidized bed boiler,CFBB)炉内传热特性进行了研究。考虑气体辐射对传热系数的影响,建立了CFBB富氧燃烧下的传热模型。以一台440t/h循环流化床锅炉为例,通过模型分析了炉内传热情况,并和空气燃烧模式下的传热特性进行比较。进行了氧气浓度在30%、50%、70%气氛下的CFBB炉膛概念性设计。在循环流化床锅炉炉内传热中,灰占主导作用,烟气成分变化对传热系数影响不大。氧气浓度越高,越有必要设置外置换热器来维持炉膛正常运行。  相似文献   

20.
从设计和实际运行两方面对HG-1900/25.4-HM2型锅炉排烟温度高的原因进行了分析.结果表明:(1)受烟气流量和烟气比热容增加等因素的影响,褐煤锅炉的排烟温度设计值比一般烟煤锅炉高约20℃;(2)再热器挡板开度过小使尾部受热面整体换热效率下降、尾部受热面积灰严重等造成空气预热器入口烟温高于设计值,空气预热器出口空气流量与理论空气流量之比(β")下降.空气预热器入口风温高于设计值等是造成排烟温度高于设计值的主要原因.对此,通过采用提高磨煤机出口风温设定值、优化吹灰方式、增加再热器烟气挡板开度等措施,使排烟温度下降15~20℃,排烟温度恢复到设计值范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号