首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive (111)In(1+) and (140)Xe(1+) ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.  相似文献   

2.
We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.  相似文献   

3.
The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.  相似文献   

4.
The injection of a 1+ beam into an electron cyclotron resonance (ECR) charge breeder is classically performed through a grounded tube placed on its axis at the injection side. This tube presents various disadvantages for the operation of an ECR charge breeder. First experiments without a grounded tube show a better use of the microwave power and a better charge breeding efficiency. The optical acceptance of the charge breeder without decelerating tube allows the injection of high intensity 1+ ion beams at high energy, allowing metals sputtering inside the ion source. The use of this method for refractory metallic ion beams production is evaluated.  相似文献   

5.
The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.  相似文献   

6.
For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K(19+) were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K(17+) have been measured.  相似文献   

7.
One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.  相似文献   

8.
Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.  相似文献   

9.
FAR-TECH, Inc., has developed a particle-in-cell Monte Carlo code (EBIS-PIC) to model ion motions in an electron beam ion source (EBIS). First, a steady state electron beam is simulated by the PBGUNS code (see http://far-tech.com/pbguns/index.html). Then, the injected primary ions and the ions from the background neutral gas are tracked in the trapping region using Monte Carlo method. Atomic collisions and Coulomb collisions are included in the EBIS-PIC model. The space charge potential is updated by solving the Poisson equation each time step. The preliminary simulation results are presented and compared with BNL electron beam test stand (EBTS) fast trapping experiments.  相似文献   

10.
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.  相似文献   

11.
12.
A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).  相似文献   

13.
The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.  相似文献   

14.
The driver linac for the facility for rare isotope beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research. The linac will be capable of accelerating a uranium beam to an energy of up to 200 Mev∕u and delivering it to a fragmentation target with a maximum power of 400 kW. Stable ion beams will be produced by a high performance electron cyclotron resonance ion source operating at 28 GHz. The ion source will be located on a high voltage platform to reach an initial beam energy of 12 keV∕u. After extraction, the ion beam will be transported vertically down to the linac tunnel in a low energy beam transport (LEBT) system and injected into a radio frequency quadrupole (RFQ) operating at a frequency of 80.5 MHz. To meet the beam power requirements, simultaneous acceleration of two-charge states will be used for heavier ions (≥Xe). This paper presents the layout of the FRIB LEBT and the beam dynamics in the LEBT. In particular, simulation and design of the beam line section before charge state selection will be detailed. The need to use an achromatic design for the charge state selection system and the advantage of an ion beam collimation system to limit the emittance of the beam injected into the RFQ will be discussed in this paper.  相似文献   

15.
A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.  相似文献   

16.
The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton∕deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.  相似文献   

17.
The operating conditions of a rf plasma ion source utilizing a positively biased electrode have been investigated to develop a stably operating, high-current ion source. Ion beam characteristics such as currents and energies are measured and compared with bias currents by varying the bias voltages on the electrode immersed in the ambient rf plasma. Current-voltage curves of the bias electrode and photographs confirm that a small and dense plasma, so-called anode spot, is formed near an extraction aperture and plays a key role to enhance the performance of the plasma ion source. The ion beam currents from the anode spot are observed to be maximized at the optimum bias voltage near the knee of the characteristic current-voltage curve of the anode spot. Increased potential barrier to obstruct beam extraction is the reason for the reduction of the ion beam current in spite of the increased bias current indicating the density of the anode spot. The optimum bias voltage is measured to be lower at higher operating pressure, which is favorable for stable operation without severe sputtering damage on the electrode. The ion beam current can be further enhanced by increasing the power for the ambient plasma without increasing the bias voltage. In the same manner, noble gases with higher atomic number as a feedstock gas are preferable for extracting higher beam current more stably. Therefore, performance of the plasma ion source with a positively biased electrode can be enhanced by controlling the operating conditions of the anode spot in various manners.  相似文献   

18.
Electron cyclotron resonance (ECR) plasma source at 50 keV, 30 mA proton current has been designed, fabricated, and assembled. Its plasma study has been done. Plasma chamber was excited with 350 W of microwave power at 2450 MHz, along with nitrogen and hydrogen gases. Microwave power was fed to the plasma chamber through waveguide. Plasma density and electron temperature were studied under various operating conditions, such as magnetic field, gas pressure, and transversal distance. Langmuir probe was used for plasma characterization using current-voltage variation. The nitrogen plasma density calculated was approximately 4.5 x 10(11) cm(-3), and electron temperatures of 3-10 eV (cold) and 45-85 eV (hot) were obtained. The total ion beam current of 2.5 mA was extracted, with two-electrode extraction geometry, at 15 keV beam energy. The optimization of the source is under progress to extract 30 mA proton beam current at 50 keV beam energy, using three-electrode extraction geometry. This source will be used as an injector to continuous wave radio frequency quadrupole, a part of 100 MeV proton linac. The required root-mean-square normalized beam emittance is less than 0.2pi mm mrad. This article presents the study of plasma parameters, first beam results, and status of ECR proton source.  相似文献   

19.
High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号