首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of temperature on impact damages in CFRP composite laminates   总被引:1,自引:0,他引:1  
In this paper, the effect of temperature variations (low and high temperatures) was studied experimentally on impact damage to CFRP laminates. The composite laminates used in this experiment were CF/EPOXY orthotropic laminated plates with lay-up [06/906]s and [04/904]s, and CF/PEEK orthotropic laminated plates with a lay-up of [06/906]s. A steel ball launched by the air gun was used to generate the CFRP laminate impact damage. For impact-damaged specimens, nondestructive evaluation (NDE), such as a scanning acoustic microscopy (SAM) was performed on the delamination-damaged samples to characterize damage growth at different temperatures.

Therefore, this study was undertaken to experimentally determine the interrelations between impact energy and impact damage (i.e. the delamination area and matrix) of CFRP laminates (CF/EPOXY and CF/PEEK) subjected to foreign object damages (FOD) at low and high temperatures.  相似文献   


2.
The failure characteristic of graphite polyetheretherketone (Gr/PEEK) under compression with a centrally located circular discontinuity was investigated through experimentation and a nonlinear ply-by-ply finite element technique. The stacking sequence of the laminates investigated were: [0 °16], [90 °16], [±45 °]4S [0 °/90 °]4S, and [0 °/ ± 45 0°/90 °]2S. In the experimentation, [90 °]16, [0 °/90 °]4S, and [0 °/ ±45 °/90 °]2S laminates, as well as three of the [0 °]16, failed due to a crack that was normal to the loading direction and initiated from the edge of the hole progressing to the outer edges of the specimen. The [±45 °]4S specimens failed to support the load due to an internal crack that originated from the hole's edge and then traveled at an angle of about 42% to the direction of loading. The finite element method used to analytically model the failure of Gr/PEEK accurately modeled the response of the specimens tested experimentally.  相似文献   

3.
The results of an experimental program in which multiaxial loads were applied to [04] and [±45]s silicon carbide/titanium (SiC/Ti) tubes are reviewed showing that stress coupling, matrix viscoplasticity (including room temperature creep) and fiber/matrix interfacial damage all contribute to nonlinear response and permanent strains in titanium matrix composites (TMC). A micromechanical model that explicitly considers the aforementioned phenomena is presented herein. The model assumes a periodic microstructure and uses finite elements to analyze a representative volume element. The composite is assumed to be in a state of generalized plane strain making it possible to discretize only a generic transverse plane while still being able to apply three-dimensional loading through appropriate boundary conditions. The response of laminated composites is predicted by incorporating the micromechanical results into nonlinear lamination theory. Predictions are presented to show the influence of the model parameters on the effective composite response of unidirectional [04] and angle-ply [±45]s TMC laminates.  相似文献   

4.
复合材料开孔层板压缩渐进损伤试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究碳纤维增强树脂基复合材料开孔层板在压缩加载过程中的损伤起始、演化方式和损伤特点,采用微距拍摄、逐级加载超声C扫描、X光扫描和扫描电子显微镜观测4种观测手段对国产CCF300/5228A[45/0/-45/90]4s、[452/02/-452/902]2s、[454/04/-454/904]s3种铺层方式的开孔层板进行了压缩试验研究。对压缩载荷作用下开孔层板的损伤起始和损伤演化进行了观察和对比。对试验中观测到的纤维微屈曲、纤维挤出、孔边开裂和分层扩展等现象之间的关系进行了分析和说明。试验结果表明:压缩载荷下45°和90°铺层相邻位置为层板易分层位置,含45°和90°铺层相邻位置的开孔层板渐进损伤过程较为明显:开孔层板在压缩载荷下较早出现损伤,损伤的起始和演化缓解了孔边应力集中,促使压缩应变能在孔边逐步释放,推迟开孔层板压缩破坏的发生,提高层板压缩承载能力。研究结果可为材料结构损伤容限设计提供依据。  相似文献   

5.
This paper is concerned with the high strain rate compressional behaviour of glass/epoxy (Hy-E 9134B, Fiberite, USA) composite laminates with or without stitching reinforcement by untwisted Kevlar-49 threads (1140 denier). The split Hopkinson pressure bar (SHPB) apparatus is used in performing the high strain rate tests. Test data are analyzed in a manner similar to that reported by Hauser Exp. Mech., 6 (1966) 395. Specimens are tested at strain rates up to 104 s−1. Unidirectional laminated parallelepiped samples are impacted along their fiber direction. Their high velocity compressive ductility is observed. Both [0°]24 and [(0°/90°)6]S glass/epoxy circular specimens with disc diameters of 10 and 50·8 mm are transversely impacted by an input bar in order to study their high strain rate behavior. Moreover, two sets of stitched circular specimens with disc diameters of 10 and 50·8 mm are also examined. The effect of strain rate and radial constraint on the dynamic properties of stitched and unstitched GFRP laminated specimens and their associated damage patterns are described.  相似文献   

6.
It is well known that the room-temperature shapes of unsymmetric laminates do not always conform to the predictions of classical lamination theory. Instead of being saddle shaped, as classical lamination theory predicts, the room-temperature shapes of unsymmetrically laminated composites are often cylindrical in nature. In addition, a second cylindrical shape can sometimes be obtained from the first by a simple snap-through action. Hyer developed for the class of all square unsymmetric cross-ply laminates which can be fabricated from four layers i.e., [03/90], [02/90/0], [0/90/0/90], [02/902], an extended classical lamination theory to predict whether these laminates have a saddle shape or one or two cylindrical shapes. The Finite Element Analysis (FEA) has just recently been used for the calculation of the room-temperature shapes of unsymmetric laminates, because more sophisticated finite element codes are now available and the calculations can be made in an acceptable time. The hope is to get more accurate results for the shape and the stresses and forces that occur during the snap through action. These results are needed for the development of active deformable composite structures based on unsymmetric laminates and incorporated shape memory alloy wires [Schlecht M. & Schulte K., Development of active deformable structures due to thermal residual stresses and incorporating shape memory alloys. In Proc. ECCM Smart Composites Workshop, ECCM6, Bordeaux, 1993, pp. 20–115.] Results for different lay-ups are presented and compared.  相似文献   

7.
Various methods have been presented to obtain the effective damping of a symmetric laminated composite. In this paper, modified classical lamination theory based upon the elastic–viscoelastic correspondence principle was utilized by developing the basic damping of Poisson's ratio for accurately predicting the damping of laminated composite beams. The analysis involves an extension of the elastic–viscoelastic approach. Futhermore, Ni and Adams' theory was used for verifying the modified classical lamination theory. Six typical laminated composites with [±θ]s,[0/θ]s,[0/±θ/90]s,[90/±θ/0]s,[0/90/±θ]s and [90/0/±θ]s, stacking sequences were employed for this study. Numerical results have shown that damping values were in some difference among prediction methods over the particular range of fiber orientation.  相似文献   

8.
Fracture behavior of cross-ply (0/90)4s, (0/90)10s, (02/902)2s and (04/908/04)T laminates of T300/934 graphite/epoxy material was studied using compact tension specimens of several widths and thicknesses, center notched tension and three point bend specimens. The process of damage initiation and propagation was studied and is discussed in detail. The critical stress intensity factor was evaluated and its variation with specimen size and type is shown. On the basis of these investigations, a suitable specimen for the evaluation of meaningful fracture toughness is suggested.  相似文献   

9.
The overall flexural buckling control of composite column strips using piezoceramic actuators is examined in this paper. The buckling control is investigated through the use of induced strain actuation associated with the piezoelectric effect and in conjunction with a closed-loop control system. Three column strip specimens have been fabricated from commercially available carbon-epoxy pre-impregnated sheets. The layup configurations are [902/0]s, [± 45/0]s, and [902/± 45]s. The length and width of each test specimen is 280 mm and 35 mm respectively. After manufacture of the composite column strips, piezoceramic actuators were surface bonded at their mid-heights on both sides of the column. Due to imperfections in the material, and of a geometrical nature, the composite column strips, with inactivated piezoceramic actuators, will deflect from the onset of loading and reach an ultimate load capability at high deflection levels. As a result of the presence of imperfections, this ultimate load will be less than the critical buckling load of the ideal structure. By applying a controlled voltage to the actuators a reactive moment will be induced at the column centre thereby removing the lateral deflections and enforcing the column to behave in a perfectly straight manner. An exact theoretical buckling analyses is outlined. This is used to evaluate the critical buckling loads of the individual composite test specimens. The test procedure is outlined and load-deflection plots, obtained with and without active control, are presented. The composite column strips with active control are shown to clearly demonstrate an increase in axial compressive load capacity compared to those without control. For the layup configurations considered, increases in load carrying capability are of the order of 19.8%–37.1%.  相似文献   

10.
Analysis of stiffness reduction of cracked cross-ply laminates   总被引:4,自引:0,他引:4  
Stiffness reduction of cracked [0°m/90°n]s laminates is analyzed by variational methods on the basis of the principle of minimum complementary energy. For this purpose admissible stress systems are constructed which satisfy equilibrium and all boundary and interface conditions. The optimal stress field is then determined by minimization of complementary energy. The analysis allows for crack interaction and random crack distribution. Results are given for Young's modulus, shear modulus and Poisson's ratio. Young's modulus results are in excellent agreement with experimental data for [[0°/90°3]]s glass/epoxy laminate.  相似文献   

11.
Localized impact problems for composite structures have recently become important. In this study, some elastic wave velocities in 7-ply GFRP laminate with [02/903/02] ply orientation after low speed impact was investigated by using both experimental methods and finite element methods. For the finite element simulation, the quasi-three-dimensional model was used. Comparing the results, the validity for the application of this model to the dynamic problem was estimated. Moreover the quasi-three-dimensional model is applied to the GFRP plates with interlaminar delamination. The relationship between the elastic wave velocities and delaminated states is discussed.  相似文献   

12.
基于伴随能量释放的渐进损伤演化思想,建立了复合材料层合板面内失效分析的连续介质损伤力学(CDM)分析模型,该模型包含损伤表征、损伤起始判定和损伤演化法则3个方面。基于CDM模型,通过引入损伤状态变量表征损伤,建立了平面应力状态下的材料损伤本构模型。采用损伤参量 fE改写Hashin准则,以判定损伤的起始。损伤演化由特征长度内的应变能释放密度控制,建立了损伤状态变量关于等效应变的渐进损伤演化法则。模型中还同时考虑了面内剪切非线性和网格敏感性,并进行了对比分析。对含缺口的[90/0/±45]3s和[(±θ4]s 2类典型复合材料层合板的面内拉伸失效进行了分析,结果表明,本文中的模型能有效预测复合材料层合板的面内拉伸强度。  相似文献   

13.
采用仿真和试验相结合的方法探讨复合材料薄壁圆管在准静态轴向压缩载荷下的失效吸能特性和吸能机理。首先,建立复合材料薄壁圆管\  相似文献   

14.
使用热压罐制备[45/-45]4s、[0/90]4s和[0/45/-45/90]2s三种铺层方式的CFRP层合板,然后在室温下与Al胶接制备出单搭接试样。使用电子万能试验机、数字图像相关法(DIC)和扫描电子显微镜(SEM)等手段测量胶接接头的拉伸载荷-位移曲线和应变分布并观察断口形貌。基于试验数据分析不同铺层方式下CFRP-Al单搭接接头的拉伸性能,研究了铺层方式对CFRP-Al单搭接接头胶接性能的影响和铺层方式胶接接头的破坏机制。结果表明,在拉伸过程中[45/-45]4s试样出现塑性变形阶段其拉伸位移最大,而[0/45/-45/90]2s和[0/90]4s试样的拉伸位移较小且发生了脆性断裂。铺层方式从[45/-45]4s到[0/45/-45/90]2s再到[0/90]4s,试样的极限载荷和纤维束断裂数量增加、层间剪切力减小、应变集中程度和分层破坏程度降低。  相似文献   

15.
S.J. Kim  S.H. Chang   《Composite Structures》2006,75(1-4):400-407
In this paper compressive tests of carbon/epoxy (plain weave, 3k) fabric composites were performed to investigate the relation between compressive strength and various bias angles and shear angles. Compressive properties such as chord modulus and maximum strength of the fabric composite materials are essential to analyze the drape behaviour and estimate the quality of the final products. Various specimens with different bias and shear angles which were fabricated by using autoclave de-gassing moulding process were prepared to estimate the strength and chord modulus with respect to the bias and shear angle variations. The stacking sequences of the compressive test specimens are [0]10T, [15]10T, [30]10T and [45]10T for bias specimens and [±37]10T, [±32]10T, [±28]10T, [±22]10T for sheared specimens. Micro-tow structures were observed to correlate the fabric compressive strength with crimp angle. Anti-buckling rig was involved to prevent specimens from buckling during the compressive tests. The compressive test was performed with 1.3 mm/min strain rates. Compressive test results were compared with calculation results. Facture modes which were classified in two different modes were analyzed using microscopic observation.  相似文献   

16.
In this study an attempt has been made to incorporate the effect of transverse shear on the stability of moderately thick/very thick composite laminated plates under in-plane compressive and shear loading using a Simple Higher Order Shear Deformation Theory based on four unknown displacement functions (u0,v0,wb,ws) instead of five which is commonly used in most of the higher order theories. The finite element method is employed to study the initial buckling load of laminated plates. The change in initial buckling response of thick rectangular antisymmetric laminates with respect to the fibre orientation angle has been studied. The interaction curves (between Nx and Nxy for different parameters of the laminates) are studied in detail.  相似文献   

17.
首先,为研究复合材料层合板在准静态载荷下的基体裂纹演化特征,提出了一个基于能量的协同损伤演化模型。然后,通过模型对损伤进行了多尺度分析:从微观角度,采用三维有限元方法求得裂纹表面位移;从宏观角度,结合裂纹表面位移,推导了萌生基体裂纹的能量释放率。最后,根据裂纹萌生准则对基体裂纹的演化过程进行预测。模型考虑了演化过程中损伤的相互影响、残余应力、基体材料非线性、材料初始损伤分布及损伤演化的不均匀性。根据演化分析流程计算了[±θ/904]s铺层玻璃纤维复合材料的基体裂纹演化过程。结果表明:这一模型能够准确地预测准静态载荷下复合材料层合板基体裂纹的损伤演化规律。  相似文献   

18.
The effect of the matrix resin on the onset and growth of delamination in composite laminates has been investigated in this work. Two kinds of graphite/epoxy composite materials (T300/648-BF3/MEA and T300/634-DDS) with quite different matrix properties have been used. The study was done on two different layups, [(±30)3/902]s and [(±45)2/O2/902]s. Out-of-plane moiré interferometry and diiodomethane-enhanced X-radiography were used to detect delamination. A strength criterion for the onset of delaminatoin is proposed and an assessment made of the effect of matrix properties on delamination onset. A modified energy release rate model is presented for characterization of delamination growth emphasis being placed on assessing the behavior of delamination resistance curves and delamination growth rate. The results indicate that enhancement of matrix strength and ductility increases the critical loads for delamination onset and delamination resistance in the composite laminates under static loading, and significantly reduces the delamination growth rate under cyclic loading.  相似文献   

19.
The matrix cracking behavior of a new high-performance thermoplastic composite material, K3B/IM7, was systematically investigated. Laminates in various grouped thickness and ply stacking sequences, [02/902/02], [02/904/02], and a quasi-isotropic laminate [+45/0/−45/90]s were tested under static and tension–tension fatigue loading. Depending on the stacking sequence of the laminates and the type of loading, various matrix cracking behavior were found. Under static loading, the matrix cracks were mainly close to the specimen edges. A few cracks were found to penetrate the specimen width, even when the load was large enough to break the specimen. However, under fatigue cyclic load, the edge initiated cracks propagated fully across the specimen width. Combined with the fatigue Paris Rule and considering the ply thickness and stacking sequence, the energy release rate method was applied to predict the relations between the loading strain amplitude and fatigue cycles for matrix cracking failure.  相似文献   

20.
从宏、微观的角度研究了碳纤维增强聚酰亚胺树脂基MT300/KH420复合材料的高温力学性能,重点揭示了MT300/KH420复合材料[0°]14和[±45°/0°/90°/+45°/0°2]s层合板在常温~500℃的弯曲性能变化规律。研究表明:MT300/KH420复合材料高温力学性能优异,[0°]14层合板在420℃的弯曲强度保持在51%以上,弯曲模量在500℃以内变化很小。[0°]14层合板在常温下断口粗糙,且贯穿厚度,表现为脆性破坏;随温度升高,树脂流动性增强,呈现出黏弹效应,破坏逐渐集中在加载点处,在500℃,部分树脂热解,纤维束脱离基体并氧化。[±45°/0°/90°/+45°/0°2]s层合板高温弯曲性能较为稳定,主要破坏为上、下表面沿45°方向开裂,并伴有层间分离,在500℃出现严重分层破坏;相比于受基体控制的层合板弯曲性能,温度对受纤维控制的层合板弯曲性能影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号