共查询到20条相似文献,搜索用时 76 毫秒
1.
2.
3.
通过对超低碳钢RH及连铸中间包取样数据进行分析,发现RH升温吹氧量的增加导致全氧含量、渣中TFe含量升高,w(CaO)/w(Al_2O_3)逐渐降低,对控制大尺寸Al_2O_3夹杂物数量比例及中包全氧含量十分不利,因此采用LF+RH双联工艺取消吹氧升温,提高钢水纯净度。该工艺中转炉低温低氧出钢,LF优化钢包底吹强度、给电升温时间,在给电结束后钢水氧质量分数控制在0.033%~0.045%,改质后钢水氧质量分数控制在0.025%~0.030%。RH取消吹氧升温,脱碳结束氧质量分数控制在0.015%~0.020%,RH出站渣中w(TFe)≤5%,w(CaO)/w(Al_2O_3)稳定控制在1.3~1.5。在工业生产应用后,超低碳钢双联工艺路线下的夹杂物控制水平可以满足冷轧汽车外板要求。 相似文献
4.
5.
超低碳钢钢中夹杂物的研究 总被引:1,自引:0,他引:1
为控制超低碳钢中的簇状夹杂物,对超低碳钢中的夹杂物和与全氧含量的关系进行了研究.钢中的夹杂物主要是Al2O3夹杂和Al2O3-TiN复合夹杂,独立夹杂物尺寸大部分小于10 μm.铸坯中w(TO)小于0.003 0%时,钢中仍存在簇状Al2O3夹杂;Al2O3簇状夹杂物与铸坯中全氧含量没有直接关系,所以钢中的全氧含量不能完全代表钢中夹杂物的水平.钢中的簇状Al2O3夹杂物与RH脱碳结束活度氧有关,要控制超低碳钢中簇状Al2O3夹杂物必须稳定生产工艺,减少RH加铝升温,使RH脱碳结束活度氧保持在一定范围. 相似文献
6.
7.
以低碳钢和超低碳钢连铸板坯皮下的凝固钩结构为研究对象,呈现了凝固钩的典型特征形貌,发现了凝固钩捕获气泡和夹杂物的现象,得到了振痕与夹杂物的位置关系,通过试验和数值模拟的方法对比了不同浇铸参数对凝固钩深度的影响,并拟合得到了计算凝固钩深度的回归公式.结果表明:凝固钩主要存在完整叶状、弯曲型、双凝固钩型及熔断型等类型;凝固... 相似文献
8.
9.
对某厂BOF-RH-CC生产的超低碳钢头坯夹杂物变化规律进行研究,结果表明:头坯中T[O]和氮含量均随着浇铸长度的增加呈明显的下降趋势;头坯中显微夹杂物数量和大型夹杂物数量随着浇铸长度的增加大体都呈减少趋势;头坯中显微夹杂物主要为:Al2O3、TiN和A12O3-TiN复合夹杂物;大型夹杂物的来源主要为:TiN、SiO2、Al2O3、含K的铝硅酸盐和Na的钙铝硅酸盐复合夹杂物;与正常坯相比较,头坯夹杂物数量在浇铸长度为3.5m以后与正常坯水平相一致. 相似文献
10.
超低碳钢夹杂物控制技术探讨 总被引:2,自引:0,他引:2
本文综述了超低碳钢的夹杂物起源,并以日本等先进钢厂的实践经验为基础,对Al2O3夹杂物的产生的工艺过程、影响因素重点进行了讨论,包括渣钢间二次氧化行为、RH处理中夹杂物行为、夹杂物的上浮行为以及铸坯的皮下气泡等.钢包渣改质是控制二次氧化的重要手段,RH加铝前自由氧含量尽可能降低,将浇铸时的氩气量降低均为控制超低碳钢的Al2O3类夹杂物的有效措施. 相似文献
11.
12.
通过运用氧氮分析仪、金相分析、大样电解分析、扫描电镜及能谱分析等分析手段,研究了LD-氩站-CC 生产的低碳钢1个浇次不同浇铸阶段铸坯(头坯、正常坯和尾坯)的洁净度。通过对不同浇铸阶段铸坯的 w T[O] 和 w [N] 对比分析可知,开浇时钢水的二次氧化比较严重,浇铸末期钢水的二次氧化较轻;正常坯的显微夹杂物数量为 7.96个/mm 2 ,头坯和尾坯的显微夹杂物数量相对正常坯分别升高了约98%和33%,显微夹杂物主要为:Al 2 O 3 、 Al 2 O 3 -(Mn,Fe)S。正常坯中大型夹杂物数量最少,为1.91 mg/(10 kg);头坯中大型夹杂物数量最高,为8.24 mg/ (10kg),尾坯中大型夹杂物数量为2.72 mg/(10 kg),头、尾坯中大型夹杂物多伴有Na、K,说明开浇和浇铸末期结 晶器卷渣严重;尾坯中含有较多的MgO-Al 2 O 3 和Al 2 O 3 -CaO-SiO 2 -MgO夹杂物,表明浇铸末期发生了中间包漩涡 卷渣。 相似文献
13.
结晶器保护渣对超低碳钢增碳的影响 总被引:1,自引:1,他引:1
论述了连续铸造超低碳钢结晶器保护渣的特性和铸坯增碳机理,提出了选择保护渣的原则,并介绍了防止铸坯增碳的方法和经验。对降低超低碳钢在连续铸造过程中的增碳量具有一定的意义。 相似文献
14.
15.
Titanium is the impurity in some special steel grades. The existence of titanium decreases the grain size, depresses the yield strength, and results in the low quality of these steels in various properties. Thus, titanium should be removed to the minimum. Based on the industrial production of ultra low carbon Al-Si killed steel, the physical-chemical behavior of titanium was investigated in vacuum degassing refining (RH) process with and without desulfurization. The influences of titanium content in hot metal, ladle slag composition, and ladle slag quantity, etc, on titanium content of refined liquid steel were discussed. The results showed that the partition ratio of titanium between ladle slag and liquid steel is in inverse proportion to the 4/3 square of aluminum content. The maximum partition ratio of titanium between top slag and liquid steel can be obtained by adjusting an optimum slag composition including contents of FeOx and Al2O3 and the slag basicity, and the suitable range of them should be controlled higher than 6%, less than 20%, and within 1. 5 to 3. 0, respectively. Moreover, desulfurization refining by RH decreases the partition ratio of titanium between ladle slag and liquid steel significantly. To ensure the titanium content stably less than 15×10-6 in a 300 t ladle, the titanium content in hot metal must be less than 500×10-6 and the thickness of basic oxygen furnace (BOF) slag carrying over must be less than 50 mm. 相似文献
16.
The precipitation of AlN is investigated in the austenite region of ultra low carbon steel. The evolution of the size and the morphology of AlN precipitates are studied by transmission electron microscopy (TEM) after isothermal annealing for different times at temperatures of 950 °C and 1050 °C. Various different morphologies are observed, including cuboids, large plates as well as irregular structures. In addition to the experimental analysis, thermo‐kinetic simulations are carried out with the software package MatCalc. The numerically calculated evolution of the mean radii as well as the time‐temperature‐precipitation (TTP) diagram for AlN precipitation in the present alloy show good agreement with experiment. 相似文献
17.
18.
影响超低碳钢碳含量检测的几个因素 总被引:1,自引:1,他引:1
从标样、取样和试样和加工几个方面分析了影响超低碳钢碳含量检测的因素,标样和试样处理的差异使分析的结果产生偏差,造成碳含量异常的主要原因是试样不良,因此减少试样不良是提高试样代表性的主要措施。用钻屑分析RH碳含量可提高与中间包碳含量的可比性。 相似文献
19.