共查询到20条相似文献,搜索用时 50 毫秒
1.
2.
3.
高效性和可扩展性是多关系数据挖掘中最重要的问题,而提高算法效率的主要瓶颈在于假设空间,且用户对分类的指导会在很大程度上帮助系统完成分类任务,减少系统独自摸索的时间。针对以上问题提出了改进的多关系决策树算法,即将虚拟连接元组传播技术和提出的背景属性传递技术应用到多关系决策树算法中。对改进的多关系决策树算法进行了理论证明,并且对多关系决策树算法和改进的多关系决策树算法进行比较实验。通过实验可以得出,当改进的多关系决策树在搜索数据项达到背景属性传递阈值时,改进的多关系决策树算法的效率相对很高且受属性个数增加(或 相似文献
4.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。 相似文献
5.
6.
7.
8.
9.
提出了一种新颖的频繁模式挖掘算法,该算法与现有的挖掘算法相比具有明显的优点,首先,该算法不需要产生候选项集,其次该算法具有更少的数据库扫描次数,该算法在中小型数据库上挖掘关联规则只需要扫描交易数据库一次,对于大型交易数据库的关联规则挖掘最多也只需要扫描交易数据库两次。因而,该算法与现有的频繁模式挖掘算法相比具有更高的效率。 相似文献
10.
一种高效的离线数据流频繁模式挖掘算法 总被引:1,自引:0,他引:1
数据流频繁模式挖掘是当前数据挖掘领域中的研究热点之一,数据流连续性、无序性、无界性及实时性的特点为挖掘算法在时间及空间性能方面提出了更高的要求.数据流中模式频度的震荡现象,迫使现有算法对概要数据结构频繁维护,致使其时间、空间效率均受到较大影响.构造了具备较高空间性能的概要数据结构SP-tree,同时定义了震荡性因子χ以量化震荡信息,提出了一种高效的离线数据流频繁模式挖掘算法SPDS,有效降低了数据震荡对算法性能的影响;在处理新到数据集时,算法采取分而治之的分离映射策略,进一步提升了时间效率;同时在查询结果方面提高了部分模式的计数精度. 相似文献
11.
12.
在频繁模式挖掘过程中能够动态改变约束的算法比较少.提出了一种基于约束的频繁模式挖掘算法MCFP.MCFP首先按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库,然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大模式树来存储,最后根据最大模式来找出所有支持度明确的频繁模式.MCFP算法允许用户在挖掘频繁模式过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的. 相似文献
13.
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。 相似文献
14.
关联规则挖掘是数据挖掘重要研究课题,大数据处理对关联规则挖掘算法效率提出了更高要求,而关联规则挖掘的最耗时的步骤是频繁模式挖掘。针对当前频繁模式挖掘算法效率不高的问题,结合Apriori算法和FP-growth算法,提出一种基于事务映射区间求交的频繁模式挖掘算法IITM(interval interaction and transaction mapping),只需扫描数据集两次来生成FP树,然后扫描FP树将每个项的ID映射到区间中,通过区间求交来进行模式增长。该算法解决了Apriori算法需要多次扫描数据集,FP-growth算法需要迭代地生成条件FP树来进行模式增长而带来的效率下降的问题。在真实数据集上的实验显示,在不同的支持度下IITM算法都要要优于Apriori、FP-growth以及PIETM算法。 相似文献
15.
FP-growth算法是挖掘频繁项集的经典算法,它利用FP-树这种紧凑的数据结构存储事务数据库与频繁项集挖掘相关的全部信息,但对于挖掘加权频繁项集并不合适。分析了现有加权频繁项集挖掘算法中存在的问题,并对FP-树进行改进,构造新的加权FP-树,提出了有效挖掘加权频繁项集的算法。最后举例说明了算法的挖掘过程,并通过实验验证了算法的有效性。 相似文献
16.
对近年来频繁模式的挖掘进行了总结。首先对有代表性的挖掘算法从算法思想、关键技术、算法的优缺点进行了分析概括,此后列举了一些典型频繁模式及关联规则的领域应用。综述内容的选择主要基于某一个研究后续被关注程度,组织过程中力争将相关研究进行归类,以给出其发展概貌。上述工作可以为频繁模式挖掘及关联规则的研究提供有益的参考。 相似文献
17.
18.
通过对关联规则挖掘技术及经典算法Apriori和FP-growth的研究和分析,提出了一种改进的频繁项集挖掘算法。该算法利用矩阵存储数据,并结合矩阵运算求项集的支持数,有效减少了事务数据库的扫描次数;利用有序频繁项目邻接矩阵创建频繁模式树,有效减少了频繁模式树的分支和层数。通过实例分析了频繁项集的挖掘过程。 相似文献
19.
20.
针对多数隐私保护的频繁模式挖掘算法需要多次数据库扫描以及计数时需要进行多次比较的不足,提出了一种增量的基于位图的部分隐藏随机化回答(IBRRPH)算法。首先,引入bitmap表示数据库中的事务,采用位与操作有效提高支持度的计算速度;其次,通过分析增量访问关系,引入增量更新模型,使得在数据增量更新时频繁模式挖掘最大限度地利用了之前挖掘结果。针对增量分别为1000至40000,与顾铖等提出的算法(顾铖,朱保平,张金康.一种改进的隐私保护关联规则挖掘算法.南京航空航天大学学报,2015,47(1):119-124)进行了对比测试实验。实验结果表明,与顾铖等提出的算法相比,IBRRPH算法的效率提高幅度超过21%。 相似文献