共查询到19条相似文献,搜索用时 63 毫秒
1.
在十六烷基三甲基溴化铵(CTAB)作用下,采用水热合成法制备TiO 2/g-C 3N 4复合材料,研究CTAB对复合材料结构及光谱性质的影响。采用XRD、TEM、N 2吸附-脱附、FT-IR、UV-Vis DRS、PL等测试手段对材料进行表征,并在可见光下进行光催化降解偏二甲肼(UDMH)废水实验。结果表明:在CTAB作用下合成的TiO 2/g-C 3N 4复合材料晶型结构完整,TiO 2粒径更小并且在g-C 3N 4片层上均匀分布,具有较大的比表面积和丰富的介孔结构,复合材料的光吸收带边拓展至450nm,光生空穴-电子复合率明显降低。光催化实验表明,可见光条件下反应120min,UDMH的去除率达到了83.2%,相比未添加CTAB制备的TiO 2/g-C 3N 4提升了13.7%。 相似文献
2.
利用光催化剂将太阳能转化为人类可以直接利用的能量, 并用其解决地球资源的枯竭和生存环境的恶化是可再生清洁能源研究的一个方向。g-C 3N 4的独特结构赋予其良好的光催化性能, 使之成为光催化领域的研究热点。目前在光催化领域, g-C 3N 4主要用于催化污染物分解、水解制氢制氧、有机合成及氧气还原。在实际应用中, 为进一步提高g-C 3N 4的光催化效果, 科研工作者开发了多种改进方法, 例如物理复合改性、化学掺杂改性、微观结构调整等。本文主要论述了g-C 3N 4在光催化领域的应用以及光催化性能的改进方法, 简要阐述了光催化和各种改进方法的机理, 分析了目前g-C 3N 4在光催化领域面临的问题和挑战, 展望了g-C 3N 4的应用前景。 相似文献
3.
随着现代工业的迅速发展,向环境中排放的有机物及重金属污染物与日俱增,光催化降解法是一种清洁、高效、低成本的处理手段。作为新兴非金属可见光驱动催化剂的g-C_3N_4具有廉价易得、无毒无害等优点,但存在可见光响应范围较窄、光生电子-空穴对复合率较高等明显问题,导致量子产率低,光催化效率不高。研究发现,部分金属硫化物、金属氧化物以及三元化合物等不同类型的半导体能够与g-C_3N_4形成异质结构,通过调控半导体的形貌能够在不同程度上与g-C_3N_4构成良好的晶格匹配,这有利于电子在两种或多种半导体之间传输。通过构建异质结构能够有效地降低带隙宽度,拓宽光响应范围,减小光生电子-空穴复合率,提高光催化效率。本文分类讲述了近几年常用的基于g-C_3N_4的复合半导体材料,它们都不同程度地实现了电子与空穴对的良好分离,有效地消除了各类有机物及重金属的污染,是具有应用价值的光催化剂候选者。 相似文献
4.
以水洗高岭土为载体, 采用盐酸对g-C 3N 4进行质子化处理, 通过浸渍法制备了g-C 3N 4/高岭土复合光催化材料。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)和紫外-可见吸收光谱(UV-Vis)等手段对复合材料的晶体结构、微观形貌和光学性能进行了表征, 并以罗丹明B为目标降解物, 研究了复合材料在可见光下的光催化性能。结果表明: 当高岭土和g-C 3N 4的质量配比为6︰3时, g-C 3N 4/高岭土具有较优的光催化性能, 其光催化速率是纯g-C 3N 4的8.62倍; 高岭土和g-C 3N 4通过静电吸引力紧密结合在一起, 该复合结构能够有效地降低光生电子和空穴的复合几率, 改善了纯g-C 3N 4光催化材料的吸附性能, 进而有效提高了其光催化性能。 相似文献
6.
采用全新的超声-冷冻干燥法对焙烧所得块状石墨相氮化碳(g-C_3N_4)进行处理,以期改善其分散性,获得高活性的纳米片状结构g-C_3N_4。通过XRD、SEM、IR、BET、UV-Vis等表征手段对系列样品的形貌、结构、能带间隙等特点进行研究,并在可见光下考察了催化剂对罗丹明B的降解效果。研究结果表明,经超声-冷冻干燥处理后的样品,其催化降解速率是块状g-C_3N_4样品的3.08倍,表明冷冻干燥对优化催化剂结构,提升催化降解性能具有重要作用。 相似文献
7.
采用浸渍-焙烧法制备了具有可见光响应活性的硅藻土/g-C 3N 4复合光催化材料。利用TG、XRD、FE-SEM、HR-TEM、FT-IR、XPS、UV-Vis-DRS 和 PL谱等手段对其物相组成、形貌和光吸收特性进行表征。以RhB的光催化降解为探针反应评价催化剂的活性。光催化结果表明, 2.32wt%硅藻土/g-C 3N 4复合材料对RhB有较高的催化活性, 光催化降解的速率常数是纯g-C 3N 4的1.9倍。自由基捕获实验表明, ·O 2-是RhB在硅藻土/g-C 3N 4复合材料上光催化降解的主要活性物种。光催化活性提高的主要原因在于硅藻土和g-C 3N 4之间静电作用有利于光生电子-空穴在g-C 3N 4表面的迁移, 进而提高g-C 3N 4的光催化活性。 相似文献
9.
Z-型光催化剂可以有效增强电荷分离, 从而改善光催化剂的活性。采用浸渍-煅烧和水热法两步制备Z型BiVO 4/GO/g-C 3N 4光催化剂, 并用不同手段对其进行表征。在BiVO 4/GO/g-C 3N 4的光催化过程中, GO纳米片作为BiVO 4和g-C 3N 4之间的快速传输通道, 可以抑制电子-空穴复合, 显著促进电荷分离, 提高三元异质结的氧化还原能力。与单组分或二元复合物相比, 该催化剂具有良好的光降解罗丹明B(RhB)的能力。在可见光照射下, 它能够在120 min内降解85% RhB, 空穴(h +)在反应中起主要作用。该工作为三元光催化剂体系提供了简单的制备方法, 其中g-C 3N 4通过GO与BiVO 4偶联, 光催化活性显著提高。 相似文献
10.
采用半封闭一步热解方法,以三聚氰胺为前驱物制备g-C 3N 4,然后以圆筒状硅藻土(DE)为载体,合成DE/g-C 3N 4复合材料。并选取天然鳞片石墨为基本原料,运用Hummers法合成了氧化石墨烯(GO),在一定量的DE/g-C 3N 4粉末中加入不同质量分数的GO,得到DE/g-C 3N 4/GO三元复合光催化材料。通过SEM、BET、EDS、XRD、FT-IR对样品的晶体结构、形貌等进行表征,研究复合材料对罗丹明B溶液的光催化降解性能。结果表明,当GO的烯掺量为5%时,DE/g-C 3N 4/GO在可见光下,120min时,对RhB的降解率为93.74%,分别比DE/g-C 3N 4和g-C 3N 4提高了15.05%和31.03%。 相似文献
11.
Visible light-responsive SnO 2/g-C 3N 4 nanocomposite photocatalysts were prepared by ultrasonic-assisting deposition method with melamine as a g-C 3N 4 precursor. The as-prepared photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, Fourier transform infrared spectra and photoluminescence emission spectra. The photocatalytic activities of the samples were evaluated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥400 nm). The results show that the SnO 2 nanoparticles with the size of 2–3 nm are dispersed on the surface of g-C 3N 4 evenly in SnO 2/g-C 3N 4 nanocomposites. The visible-light photocatalytic activity of SnO 2/g-C 3N 4 nanocomposites is much higher than that of pure g-C 3N 4, and increases at first and then decreases with the increment of the content of g-C 3N 4 in the nanocomposites. The visible-light photocatalytic mechanism of the investigated nanocomposites has been discussed. 相似文献
13.
Different g-C 3N 4 composite systems (coke carbon/g-C 3N 4, Bi/Bi 2WO 6/g-C 3N 4 and Bi/Bi 2MoO 6/g-C 3N 4) have been assessed as photocatalysts for wastewater pollutants removal. The coke carbon/g-C 3N 4 hybrid, produced by thermal treatment at 550 °C of a composite made from melamine cyanurate and coke, only showed activity under UV-light irradiation. On the other hand, inorganic Bi spheres/Bi mixed oxides/g-C 3N 4 nanohybrids (Bi/Bi 2WO 6/g-C 3N 4 and Bi/Bi 2MoO 6/g-C 3N 4 composites), produced by thermal reduction of Bi 2WO 6 or Bi 2MoO 6 by g-C 3N 4, exhibited a remarkable red-shift, up to 620 nm, and allowed the visible-light driven degradation of the contaminant, albeit in combination with some adsorption. 相似文献
14.
The ternary composites of g-C 3N 4/N-TiO 2/FACs (FAC: Fly Ash Cenospheres) were synthesized by an in-situ hydrolysis method to improve the photocatalytic activity and their stability. When TiO 2 was anchored on FAC, it was easily to be separated from the aqueous solution and could be repeatedly utilized. In the present experiments, the degradation rate remained for more than 68% even after the composite reused for seven times. The band gap of g-C 3N 4/N-TiO 2/FAC was 2.75?eV, which might be owing to the synergistic effect between N-TiO 2 and g-C 3N 4. The composite of g-C 3N 4/N-TiO 2/FAC had an ideal activity of 72.2% under visible light illumination for 180?min. It was about 1.3 times of N-TiO 2/FAC and 3.5 times of g-C 3N 4. The synergistic effect of SiO 2, Fe 2O 3 and TiO 2 components resulted to the improvement of photocatalytic performance. 相似文献
15.
聚合型半导体材料g-C3N4因其优异的物理性能和光电性能成为当今研究的热门材料。本文从结构分析和理论计算角度讨论了g-C3N4能够作为无金属催化剂的原因,综述了介孔g-C3N4、无机元素掺杂g-C3N4、金属负载g-C3N4、g-C3N4/金属氧化物复合物和有机改性g-C3N4等不同改性g-C3N4的制备和性质,着重分析了他们催化光解水析氢反应的机理、影响因素及研究进展,并阐述了今后的研究方向。 相似文献
16.
Herein, we prepared the g-C3N4/Gd-doped Bi2WO6 Z-scheme heterojunction (BCN) composites by a simple hydrothermal method. The composites were investigated by SEM (EDX), TEM, XRD, XPS, UV–Vis DRS and PL analysis. The photocatalytic performance of composites was envaulted by degrading methylene blue (MB) under the irradiation of a 300 W mercury lamp. The results demonstrated that coupling g-C3N4 and doping Gd 3+ effectively enhanced the photocatalytic efficiency of pure Bi2WO6. The 92% of MB was degraded within 120 min by optimal 0.15–100 BCN sample, being 1.61 times as that of Bi2WO6. The greatly enhanced performance of 0.15–100 BCN was due to the synergistic effect of Gd 3+ doping and g-C3N4 coupling, which maintained high redox capacity. According to the experiment of capture active species, Z-scheme charge transfer mechanism was also deduced. This study may provide an efficient and green method for the treatment of dyestuff industrial wastewater. 相似文献
17.
Novel g-C 3N 4/Fe 3O 4/CuWO 4 nanocomposites, as magnetic visible-light-driven photocatalysts, fabricated through a simple refluxing-calcination process. The synthesized photocatalysts were characterized by a series of techniques including XRD, EDX, SEM, TEM, HRTEM, FT-IR, TGA, BET, UV–vis DRS, PL, and VSM. The results showed that heterojunctions are formed between g-C 3N 4, Fe 3O 4, and CuWO 4, which favor suppression of the photogenerated electron/hole pairs from recombination. The resultant g-C 3N 4/Fe 3O 4/CuWO 4 (30%) sample exhibited superior photocatalytic performance. The degradation rate constants on the g-C 3N 4/Fe 3O 4/CuWO 4 (30%) nanocomposite were almost 10.5, 17, 12.5, and 42.5 times higher than those of the pristine g-C 3N 4 for degradations of RhB, MB, MO, and fuchsine, respectively. Moreover, the photocatalyst was magnetically separated and recycled with negligible loss in the activity, which is important for the sustainable photocatalytic processes. Thus, the ternary nanocomposite could have potential applications in different photocatalytic processes. 相似文献
19.
以3,4,9,10-苝四甲酸二酐和L-天冬氨酸为原料,合成水溶性苝二酰亚胺衍生物N,N′-二(2-丁二酸基)-3,4,9,10-苝四羧酸二酰亚胺(PASP)。采用水热法将PASP接枝在g-C_(3)N_(4)上,制备PASP改性g-C_(3)N_(4)复合光催化剂(g-C_(3)N_(4)-PASP)。通过X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见光漫反射光谱(UV-Vis DRS)和固体荧光光谱等对g-C_(3)N_(4)-PASP的组成、结构、形貌和光学性质等进行表征,考察g-C_(3)N_(4)-PASP对水溶液中模型污染物亚甲基蓝(MB)的光催化降解活性。结果表明:g-C_(3)N_(4)与PASP经水热反应,可通过酰胺键共价结合;相比纯g-C_(3)N_(4),g-C_(3)N_(4)-PASP比表面积显著增大,吸收带边红移至614 nm,同时PASP修饰可促进g-C_(3)N_(4)材料表面光生电子和空穴分离,进而有效提升光催化活性。在可见光(λ>420 nm)照射下,g-C_(3)N_(4)-PASP对MB的降解率60 min内可达99.4%,降解速率常数k约为g-C_(3)N_(4)的2倍。 相似文献
|