首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing application of exposed high energy facet is an effective strategy to improve the photocatalytic performance of photocatalysts because the vacancies are beneficial to photocatalytic reaction. Vacancy dominates numerous distinct properties of semiconductor materials and thus plays a conclusive role in the photocatalysis applications. In this work, two kinds of BiOI nanomaterials with different vacancies are synthesized via a facile solvothermal method. The positron annihilation analysis shows that the thinner BiOI nanosheets possess larger‐sized vacancy than BiOI nanoplates. Thus, BiOI nanosheets show the enhanced separation efficiency of electron–hole pairs and adsorption ability for contaminants under visible light. The results are also validated with the first‐principle computation. Therefore, higher photocatalytic activity to the photodegradation of tetracycline is observed from the nanosheets than that obtained from BiOI nanoplates. This work not only arouses attention to vacancies, but also opens up an avenue for precision design of vacancies to prepare novel photocatalytic materials driven under solar light.  相似文献   

2.
To achieve excellent photoelectrochemical water‐splitting activity, photoanode materials with high light absorption and good charge‐separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen‐vacancy concentration (8.7%) exhibits high light‐absorption and good charge‐separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm?2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm?2 and stable gas production with an average solar‐to‐hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water‐splitting system.  相似文献   

3.
Despite a suitable bandgap of bismuth vanadate (BiVO4) for visible light absorption, most of the photogenerated holes in BiVO4 photoanodes are vanished before reaching the surfaces for oxygen evolution reaction due to the poor charge separation efficiency in the bulk. Herein, a new sulfur oxidation strategy is developed to prepare planar BiVO4 photoanodes with in situ formed oxygen vacancies, which increases the majority charge carrier density and photovoltage, leading to a record charge separation efficiency of 98.2% among the reported BiVO4 photoanodes. Upon loading NiFeOx as an oxygen evolution cocatalyst, a stable photocurrent density of 5.54 mA cm−2 is achieved at 1.23 V versus the reversible hydrogen electrode (RHE) under AM 1.5 G illumination. Remarkably, a dual-photoanode configuration further enhances the photocurrent density up to 6.24 mA cm−2, achieving an excellent applied bias photon-to-current efficiency of 2.76%. This work demonstrates a simple thermal treatment approach to generate oxygen vacancies for the design of efficient planar photoanodes for solar hydrogen production.  相似文献   

4.
Bismuth vanadate (BiVO4) is a promising photoanode material for photoelectrochemical (PEC) water splitting. However, owing to the short carrier diffusion length, the trade‐off between sufficient light absorption and efficient charge separation often leads to poor PEC performance. Herein, a new electrodeposition process is developed to prepare bismuth oxide precursor films, which can be converted to transparent BiVO4 films with well‐controlled oxygen vacancies via a mild thermal treatment process. The optimized BiVO4 film exhibits an excellent back illumination charge separation efficiency mainly due to the presence of enriched oxygen vacancies which act as shallow donors. By loading FeOOH/NiOOH as the cocatalysts, the BiVO4 dual photoanodes exhibit a remarkable and highly stable photocurrent density of 5.87 mA cm?2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination. An artificial leaf composed of the BiVO4/FeOOH/NiOOH dual photoanodes and a single sealed perovskite solar cell delivers a solar‐to‐hydrogen conversion efficiency as high as 6.5% for unbiased water splitting.  相似文献   

5.
The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar-to-hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2S4/In2S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen-evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm−2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2S4. Such a high-performance photoanode enables the integrated metal sulfide photoanode–perovskite solar cell system to deliver a STH conversion efficiency of 3.3%.  相似文献   

6.
Vacancy engineering is an effective strategy to enhance solar‐driven photocatalytic performance of semiconductors. It is highly desirable to improve the photocatalytic performance of composite nanomaterials by the introduction of vacancies, but the role of vacancies and the heterostructure in the photocatalytic process is elusive to the composite nanomaterials. Herein, the introduction of I vacancies can significantly enhance the photocatalytic activity of Bi2O3–BiOI composite nanosheets in a synergistic manner. The excellent photocatalytic performance of the Bi2O3–BiOI composites is attributed to the combination of Bi2O3 and BiOI and the existence of I vacancies in Bi2O3–BiOI composites. Specifically, density functional theory calculation shows that the existence of I vacancies would create a new electric states vacancy band below the conduction band of BiOI and thus can reduce the bandgap of BiOI nanosheets. This greatly facilitates the scavenging of the photogenerated electron on the surface of BiOI by Bi2O3, therefore, enhancing the overall photocatalytic activity of the composites. The enhanced photocatalytic efficiency is demonstrated by the degradation of tetracycline (TC), which reaches 96% after 180 min and by the high total organic carbon (TOC) removal (89% after 10 h visible light irradiation). This study provides a novel approach for the design of high‐performance composite catalysts.  相似文献   

7.
Photo‐electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar‐to‐H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano‐architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible‐light‐active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm?2 at 1.23 V versus RHE, which is among the highest for oxide‐based photoanodes and over 4 times higher than the unstructured planar photoanode.  相似文献   

8.
Boosting charge separation and transfer of photoanodes is crucial for providing high viability of photoelectrochemical hydrogen (H2) generation. Here, a structural engineering strategy is designed and synthesized for uniformly coating an ultrathin CoFe bimetal-organic framework (CoFe MOF) layer over a BiVO4 photoanode for boosted charge separation and transfer. The photocurrent density of the optimized BiVO4/CoFe MOF(NA) photoanode reaches a value of 3.92 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE), up to 6.03 times that of pristine BiVO4, due to the greatly increased efficiency of charge transfer and separation. In addition, this photoanode records one onset potential that is considerably shifted negatively when compared to BiVO4. Transient absorption spectroscopy reveals that the CoFe MOF(NA) prolongs charge recombination lifetime by blocking the hole-transfer pathway from the BiVO4 to its surface trap states. This work sheds light on boosting charge separation and transfer through structural engineering to enhance the photocurrent of photoanodes for solar H2 production.  相似文献   

9.
《Advanced Powder Technology》2019,30(8):1576-1583
Constructing Z-scheme heterojunctions comprising of constituents with different dimensionality is an effective strategy to spatially separate electron and hole. To fully utilize the synergistic coupling effect of dimensionality, herein, we first immobilize g-C3N4 quantum dots (CNQDs) onto ZnO nanosheets with oxygen vacancies (OV-ZnO) to create a 0D/2D hybrid via a facile and cost-effective approach. The CNQDs/OV-ZnO heterojunctions display CNQDs content-dependent performance in visible-light photocatalytic activity. The optimal CNQDs/OV-ZnO heterojunction exhibits high photocatalytic activity for degradation of methyl blue and bisphenol A, where the kinetic constant is 11.4 and 32.5 fold of pure OV-ZnO, respectively. Photoluminescence, electrochemical impedance spectroscopy and photocurrent verify that the photogenerated electron-hole pairs in this 0D/2D Z-scheme heterojunction have been effectively separated. The enhanced photocatalytic activity could be attributed to the synergistic effect of efficient Z-scheme charge separation, highly dispersed 0D CNQDs, coordinating sites of 2D OV-ZnO nanosheets and the strong coupling between them. In addition, the 3D flower-like structure constructed by 2D nanosheets greatly inhibits the leaching and loss of the photocatalyst in the recycling process, and ensures the high recycling ability of CNQDs/OV-ZnO. This work paves the way toward designing novel visible-light 0D/2D photocatalysts in the application of solar energy.  相似文献   

10.
Au-BiVO(4) heterogeneous nanostructures have been successfully prepared through in situ growth of gold nanoparticles on BiVO(4) microtubes and nanosheets via a cysteine-linking strategy. The experimental results reveal that these Au-BiVO(4) heterogeneous nanostructures exhibit much higher visible-light photocatalytic activities than the individual BiVO(4) microtubes and nanosheets for both dye degradation and water oxidation. The enhanced photocatalytic efficiencies are attributed to the charge transfer from BiVO(4) to the attached gold nanoparticles as well as their surface plasmon resonance (SPR) absorption. These new heteronanostructures are expected to show considerable potential applications in solar-driven wastewater treatment and water splitting.  相似文献   

11.
钒酸铋(BVO)可用于光电化学(PEC)水解产氢,但受限于其缓慢的表面水氧化动力学,在电极表面修饰单一的析氧助催化剂达不到理想的性能。本工作在BVO电极表面修饰FeNiOx助催化剂可以显著降低起始电压,增强光电化学性能。此外,沉积g-C3N4后修饰FeNiOx助催化剂得到的光电极具有更优异的性能。厚度适合的g-C3N4纳米片与BVO构成Ⅱ型p-n异质结,有效抑制了光生电子空穴的复合,促进了电极的电荷分离。电化学测试结果表明,沉积了g-C3N4后,电极的电荷分离效率达到88.2%,比BVO/FeNiOx (60.6%)提升了近1.5倍。经过g-C3N4和FeNiOx协同修饰的BVO/g-C3N4/Fe Ni Ox电极,表面电荷注入效率达到了90.2%,同时,在1....  相似文献   

12.
Nanostructured photoanodes based on well‐separated and vertically oriented WO3 nanorods capped with extremely thin BiVO4 absorber layers are fabricated by the combination of Glancing Angle Deposition and normal physical sputtering techniques. The optimized WO3‐NRs/BiVO4 photoanode modified with Co‐Pi oxygen evolution co‐catalyst shows remarkably stable photocurrents of 3.2 and 5.1 mA/cm2 at 1.23 V versus a reversible hydrogen electrode in a stable Na2SO4 electrolyte under simulated solar light at the standard 1 Sun and concentrated 2 Suns illumination, respectively. The photocurrent enhancement is attributed to the faster charge separation in the electronically thin BiVO4 layer and significantly reduced charge recombination. The enhanced light trapping in the nanostructured WO3‐NRs/BiVO4 photoanode effectively increases the optical thickness of the BiVO4 layer and results in efficient absorption of the incident light.  相似文献   

13.
An ideal photoelectrochemical (PEC) anode should process effective light absorption, charge transport, and separation efficiency. Here, a novel 3D brochosomes‐like TiO2/WO3/BiVO4 array as an efficient photoanode by combining a colloid polystyrene sphere template and electrochemical deposition routes for PEC hydrogen generation is reported. The as‐fabricated 3D TiO2/WO3/BiVO4 brochosomes photoanode yields excellent PEC performance with photocurrent densities of ≈3.13 and ≈4.27 mA cm?2 with FeOOH/NiOOH catalyst, respectively, measured in 0.5 m Na2SO4 solution with 0.1 m Na2SO3 at 1.23 V versus reversible hydrogen electrode (RHE) under simulated AM1.5 light illumination, which is ≈6 times the reference sample of a planar WO3/BiVO4 film electrode. The significantly improved performance could be benefited from the ordered hollow porous structure that provides enhanced light absorption and efficient charge transport as well as improved charge separation efficiency by WO3/BiVO4 “host–guest” heterojunctions.  相似文献   

14.
A novel three-dimension separable and recyclable rGH-PANI/BiOI photocatalyst with the synergism of adsorption-enrichment and photocatalytic-degradation was successfully prepared via a facile three-step hydrothermal method.The three-dimension reduced graphene oxide hydrogel(rGH)in with flower-like BiOI photocatalyst uniformly distributed not only possesses excellent adsorption and electron transport properties,but also is easy to be separated from water for recycling.In addition,polyphenylamine(PANI)provides superior hole transport ability due to its delocalized π-π conjugate structure.The cooperation of rGH and PANI greatly enhances the separation efficiency of photogenerated carriers,and finally improves the photocatalytic degradation behaviors.The removal rates of Rhodamine B(RhB)by rGH-PANI/BiOI-70%composite under visible light respectively reach 100%and 50.13%in static and dynamic systems,which are 12.85 and 3.58 times of BiOI,respectively.The removal rate does not show decrease after 5 recycles indicating the excellent separable and recyclable property of rGH-PANI/BiOI photocatalyst.The work provides an essential reference for designing and constructing hydrogel-based ternary composite photocatalysts with excellent synergism of adsorption and photocatalysis,which shows great potential in the treatment of water pollution.  相似文献   

15.
Due to its appropriate bandgap(~2.4 eV)and efficient light absorption,bismuth vanadate(BiVO4)shows promising photocatalysis activity.However,the charge carrier recombination and poorelectron transmis-sion often induce poor photocatalytic performance.Herein,we report a new method to in-situ synthesize non-noble metal Bi decorated mulberry-like BiVO4 by a two-step calcination process.Comprehensive characterizations reveal that non-noble metal Bi nanoparticles grown in-situ on BiVO4 result in the red-shift of the absorbance edge,greatly extending the light absorption from the ultraviolet into the near-infrared region.The surface plasmon resonance excitation of Bi nanoparticles and synergetic effects between Bi and BiVO4 effectively improve the photocatalytic efficiency and promote the separation of photoinduced electron-hole pairs in mulberry-like BiVO4.Density functional theory(DFT)calculation results further verify that the electrons are transferred from Bi to BiVO4 and the formation of·OH radical in Bi/BiVO4 is attributed to the lower simulated free energy,which supports our experimental outcomes.This work provides a novel strategy to enhance light absorption and promote efficient solar utilization of photocatalysts for practical applications.  相似文献   

16.
本文报道了通过脱合金和后续退火工艺合成一种新型超薄二维尖晶石结构的Co2Al O4纳米片.通过温和的溶剂热还原法将氧空位缺陷引入Co2Al O4纳米片中,使得电化学表面积增大,活性位密度变高,钴原子得到电子而产生更多的空轨道.这些空轨道有利于接受水分子中氧原子的孤对电子,促进水分子的活化.含有氧空位的超薄Co2Al O4纳米片在10 m A cm^-2时的过电位为280 m V,塔菲尔斜率为70.98 m V dec^-1.此外,其在碱性溶液中也表现出显著的稳定性,并且优于多数已报道的Co3O4电催化剂.该工作为制备高效的可持续新能源材料提供了新思路.  相似文献   

17.
The appropriate energy level position of photocatalysts dominates the photocatalytic redox reaction and utilization efficiency of solar energy for wastewater treatment.Herein,we report a near-infrared(NIR)light driven Bi5+-rich Bi4O7 photocatalyst,achieving a greatly enhanced photocatalytic activity for pollutant removal compared with Bi3+-replenished Bi2O3.Density functional theory calculations show the formation of an intermediate band in the Bi4O7 structure because of the hybridization of O 2p and Bi 4s orbits.The formation of the intermediate band not only narrows the band gap but also improves the optical absorption property and separation efficiency of the photoinduced carriers.The existence of the oxygen vacancies(OVs)in the Bi4O7 nanosheets ensures high carriers'concentration,which is verified by the Hall effect test.The synergetic effects of the OVs and Bi5+greatly accelerate the separation efficiency of the photogenerated carriers.Consequently,the Bi4O7 nanosheets exhibit enhanced NIR light driven photocatalytic activity for the degradation of rhodamine B and ciprofloxacin compared with the bulk Bi2O3.This study paves the way to the design of highly efficient NIR light-responsive Bi-based photocatalysts for environmental purification.  相似文献   

18.
Zinc spinel ferrite, ZnFe2O4 (ZFO), is an emerging photoanode material for photoelectrochemical (PEC) solar fuel production. However, a lack of fundamental insight into the factors limiting the photocurrent has prevented substantial advance in its performance. Herein, it is found that ZFO nanorod array photoelectrodes with varying crystallinity exhibit vastly different PEC properties. Using a sacrificial hole scavenger (H2O2), spatially defined carrier generation, and electrochemical impedance spectroscopy, it is shown that ZFO with a relatively poor crystallinity but a higher spinel inversion degree (due to cation disorder) exhibits superior photogenerated charge separation efficiency and improved majority charge carrier transport compared to ZFO with higher crystallinity and a lower inversion degree. Conversely, the latter condition leads to better charge injection efficiency. Optimization of these factors, and the addition of a nickel–iron oxide cocatalyst overlayer, leads to a new benchmark solar photocurrent for ZFO of 1.0 mA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) and 1.7 mA cm?2 at 1.6 V versus RHE. Importantly, the observed correlation between the cation disorder and the PEC performance represents a new insight into the factors important to the PEC performance of the spinel ferrites and suggests a path to further improvement.  相似文献   

19.
A facile,fluorine-free approach for synthesizing vertically aligned arrays of mesocrystalline anatase TiO2 nanosheets with highly exposed {001} facets was developed through topotactic transformation.Unique mesocrystalline {001}-faceted TiO2 nanosheet arrays vertically aligned on conductive fluorine-doped tin oxide glass were realized through topotactic conversion from single-crystalline precursor nanosheet arrays based on lattice matching between the precursor and the anatase crystals.The morphology and microstructure of the {001}-faceted TiO2 nanosheets could be readily modulated by changing the reactant concentration and annealing temperature.Owing to enhanced dye adsorption,reduced charge recombination,and enhanced light scattering arising from the exposed {001} facets,in addition to the advantageous features of low-dimensional structure arrays (e.g.,fast electron transport and efficient charge collection),the obtained TiO2 nanosheet arrays exhibited superior performance when they were used as anodes for dye-sensitized solar cells (DSSCs).Particularly,{001}-faceted TiO2 nanosheet arrays ~15 μm long annealed at 500 ℃ showed a power conversion efficiency of 7.51%.Furthermore,a remarkable efficiency of 8.85% was achieved for a DSSC based on double-layered TiO2 nanosheet arrays ~35 μm long,which were prepared by conversion from the precursor nanoarrays produced via secondary hydrothermal growth.  相似文献   

20.
Integrating hematite nanostructures with efficient layer double hydroxides (LDHs) is highly desirable to improve the photoelectrochemical (PEC) water oxidation performance. Here, an innovative and facile strategy is developed to fabricate the FeTi-LDH overlayer decorated Fe2O3/Fe2TiO5 photoanode via a surface self-transformation induced by the co-treatment of hydrazine and NaOH at room temperature. Electrochemical measurements find that this favorable structure can not only facilitate the charge transfer/separation at the electrode/electrolyte interface but also accelerate the surface water oxidation kinetics. Consequently, the as-obtained Fe2O3/Fe2TiO5/LDH photoanode exhibits a remarkably increased photocurrent density of 3.54 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) accompanied by an obvious cathodic shift (≈140 mV) in the onset potential. This work opens up a new and effective pathway for the design of high-performance hematite photoanodes toward efficient PEC water oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号