首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the study was to evaluate the direct bone bonding and osteointegration of the commercial pure (cp Ti) implants coated with Bonelike® synthetic bone graft by plasma spraying. The Bonelike® coated implant was placed in the mandible of a 40-year-old patient and it was removed after a healing period of 3 months with a trephine of 6 mm diameter. The structure of the coating and new bone/implant interface of retrieved samples were evaluated using scanning electron microscopy (SEM) and histological analysis using light microscopy. In vivo microstructure observations of Bonelike® coated retrieved implants showed excellent bone remnants on its surface without any tissue and inflammatory signs observed. The reported Bonelike® coated (cp Ti) implants improved primary stability, which may increase the lifetime of the implant. Bonelike® coated dental implants proved to be highly bioactive with extensive new bone formation and strongly bonded to Bonelike® coating.  相似文献   

2.
Tightly bonding of bioactive coating is the first crucial need for orthopaedic implants. This study describes a novel and convenient technique to prepare bioactive coating with high adhesion on orthopaedic substitutes made of polymeric matrix. Here, a chemical corrosion method has been adopted to fabricate a coating on the surface of injection-moulded polyamide66 (PA66) substrates by corrosive nano-hydroxyapatite/polyamide66 (n-HA/PA66) composite slurry. Scanning electron microscopy observation shows that a porous chemical corrosion region presents between the coating and dense PA66 substrate. Energy-dispersive X-ray spectroscopy analysis indicates that the chemical corrosion region is mainly composed of PA66 matrix, and the coating layer is an n-HA-rich layer. Both the pore size and n-HA composition increase gradually from the polymeric substrate towards the coating surface. Mechanical testing shows the bonding strength can reach 13.7 ± 0.2 MPa, which is much higher than that fabricated on polymeric matrix by other coating methods. The gradual transition in coating structure and composition benefits for the interface bonding and for the surface bone-bonding bioactivity. Subsequent cell experiments corroborate n-HA-rich coating and a porous structure is benefitting for cell attachment and proliferation. The convenient coating method could be popularized and applied on similar polymer implants to produce a tightly and porous bioactive coating for bone tissue regeneration.  相似文献   

3.
The utilization of injectable acrylic bone cement is crucial to the outcome of vertebroplasty and kyphoplasty. However, only a few cements that are in clinical use today are formulated specifically for use in these procedures and even these formulations are not regarded as “ideal” injectable bone cements. The aim of this work is to prepare bioactive bone cements by adding strontium hydroxyapatite (SrHA) to a cement formulation based on polymethylmethacrylate. Thus, the cement combines the immediate mechanical support given by the setting of the acrylic matrix with optimum radiopacity and bioactivity due to the incorporation of the SrHA. Formulations of bioactive cement were prepared with 10 and 20 wt% of SrHA as synthesised and after a surface treatment with the monomer. Cements loaded with treated particles showed an enhancement of their handling properties, and hence, an improvement on their rheological behaviour, injectabilities and compressive parameters. Further experiments were also carried out to determine their bioactivity and biocompatibility and results appear in other publication.  相似文献   

4.
Co–Cr–Mo endoprostheses with a dual bioactive glass (BG) coating and titanium implants coated with a bioactive glass-ceramic (BGC) were studied under lead-bearing conditions in the rabbit hip. The dual BG coating contained an inner layer of high durability and an outer bioactive layer. Each type of coating improved the stabilization of prosthesis during the experiment period of 8 weeks compared to non-coated control implants. EDXA analysis confirmed the ability of BG and BGC coatings to bond chemically to bone. The BGC coating on titanium alloy proved superior to the dual BG coating on Co–Cr–Mo prosthesis with regard to bone formation on the surface of the implant. The bioactive top layer of the dual BG coating showed resorption, especially in the areas without direct bone contact. This is explained by partial crystallization of the glass during firing. Thermal discrepancy between BGC coating and titanium core caused cracking of the coating, which remains a major obstacle to its use as a bioactive coating.  相似文献   

5.
Implants coated with bioactive glass by CO2-laser, an in vivo study   总被引:1,自引:0,他引:1  
Due to ageing of the population, the number of revision operations is expected to increase. Thus good fixation of medical implants is crucial for successful treatment. In our previous studies, a method to coat titanium implants with bioactive glass (BAG) via CO2 laser treatment was introduced. It allows to localise the application of a bioactive coating, without heat treatment of the whole implant. In the present study, cylindrical titanium implants were used (BAG-coated, control group: NaOH-treated and grit-blasted Ti). Three implants were placed in each femoral epicondyle of six rabbits. After eight weeks the animals were sacrificed. Half of the implants were subjected to a torsional loading test. In the control groups, the failure occurred at the bone-implant interface, in the BAG group the failure occurred mainly in the reacted glass. The implants coated with BAG were integrated into host bone without a connective tissue capsule and were surrounded by significantly more bone than the control implants. The findings indicate clearly that the use of CO2 laser radiation to create BAG coatings did not inhibit the bioactive properties of the glass in terms of osteoconduction.  相似文献   

6.
In recent years, many procedures based on surface modification have been suggested to improve the biocompatibility and biofunctionality of orthopedic titanium-based implants. In this contest, the development of a new titanium-based biomaterial that could be covalently modified with biologically active molecules (i.e., RGD-peptides, growth factors, etc.) able to improve osteoblasts response was investigated. The strategy followed was based on a preliminary coating of the implant material by an adherent thin polymer film to which bioactive molecules could be grafted exploiting the polymer surface chemical reactivity. In this work, we focused our attention on pyrrole-3-acetic acid (Py-3-acetic), a pyrrole with carboxylic acid substituent, whose electrosynthesis and characterization on titanium substrates were already accomplished and whose potentialities in the design of new biocompatible surfaces are well evident. As first step, the biocompatibility of the electrochemically grown PPy-3-acetic films was investigated performing in vitro tests (adhesion and proliferation) with mouse bone marrow cells. Successively, the availability and reactivity of surface carboxylic groups were tested through the grafting of an aminoacidic residue to PPy-3-acetic films.  相似文献   

7.
Biological behavior of sol-gel coated dental implants   总被引:1,自引:0,他引:1  
The biocompatibility of dental implants coated with titania/hydroxyapatite (HA) and titania/bioactive glass (BG) composites obtained via sol-gel process was investigated using an in vitro and in vivo model. A device for the in vitro testing of screw-shaped dental implants was developed, in order to well compare the two experimental models studying the behavior of human MG63 osteoblast-like cells seeded onto a particular geometry. The expression of some biochemical parameters of osteoblastic phenotype (alkaline phosphatase specific activity, collagen and osteocalcin production) and some indications on cells morphology obtained by scanning electron microscopy were evaluated. The in vitro and in vivo models were compared after implants insertion in rabbit tibia and femur. The removal torque and histomorphometric parameters (percentage of bone in contact with implant surface and the amount of bone inside the threaded area) were examined. A good agreement was found between the in vitro and in vivo models. These experiments showed better performances of HA and BG sol-gel coated dental implants with respect to uncoated titanium; in particular, it was found that in vitro the HA coating stimulates osteoblastic cells in producing higher level of ALP and collagen, whereas in vivo this surface modification resulted in a higher removal torque and a larger bone-implant contact area. This behavior could be ascribed to the morphology and the chemical composition of the implants with rough and bioactive surfaces.  相似文献   

8.
We conducted histologic and histomorphometric studies to evaluate the osteointegration of gradient coatings composed of bioactive glass and nanohydroxyapatite (BG–nHA) on titanium-alloy orthopaedic implants and surrounding bone tissue in vivo. Titanium-alloy implants with a gradient coating (gradient coating group), uncoated implants (uncoated group), and implants with a conventional hydroxyapatite (HA) coating (HA coating group) were randomly implanted in bilateral femoral condyles of 36 male New Zealand rabbits. The bone–implant contact at 12 and 24 weeks and the new bone volume in the notch created for observing bone ingrowth at 4, 12, and 24 weeks were found greater in the gradient coating group than those in both the uncoated group and the HA coating group (p < 0.05). Fluorescence micrographs showed active osteogenesis in the gradient coating group at 4 weeks after implantation. These findings indicated that BG–nHA gradient coatings could enhance the osteointegration of orthopaedic implant.  相似文献   

9.
The osseointegration of long‐term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP‐2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP‐2 on the formation of new bone around titanium implants was studied. A total of 8 titanium‐alloy cylinders (Ti‐6Al‐4V) with a plasma spray coating (TPS; 400 μm thickness) were implanted into femoral condyles of mature sheep: rhBMP‐2 solution (1 μg) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP‐2‐free controls. Two of these controls exhibited an additional calciumphosphate‐coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow‐up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP‐2‐solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS‐controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP‐2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long‐term implants (e. g. joint replacements) with rhBMP‐2‐biocoating for humans.  相似文献   

10.
生物活性聚乳酸的研究   总被引:2,自引:0,他引:2  
作为生物医用材料而言,由于聚乳酸本身的缺陷,制备具有生物活性的聚乳酸就成为一条可行的弥补之道。目前聚乳酸生物活化的方法有物理法和化学法。物理法主要通过共混、表面吸附或涂层等实现对聚乳酸的生物活化;化学法包括共聚、交联、表面修饰等,通过改变聚合物大分子或表面结构赋予材料生物活性。本文对这些方法进行了评述,并提出了采用仿生性设计原则来制备具有生物活性的聚乳酸材料。  相似文献   

11.
The aim of this study was to analyse the stability and osseointegration of surface treated titanium implants in rabbit femurs. The implants were either grit-blasted and acid-etched (BE Group), calcium phosphate (CaP) coated by using the electrodeposition technique, or had bioactive molecules incorporated into the CaP coatings: either cyclic adenosine monophosphate (cAMP) or dexamethasone (Dex). Twenty four cylindrical titanium implants (n = 6/group) were inserted bilaterally into the femoral epiphyses of New Zealand White, female, adult rabbits for 4 weeks. Implant stability was measured by resonance frequency analysis (RFA) the day of implantation and 4 weeks later, and correlated to histomorphometric parameters, bone implant contact (BIC) and bone growth around the implants (BS/TS 0.5 mm). The BIC values for the four groups were not significantly different. That said, histology indicated that the CaP coatings improved bone growth around the implants. The incorporation of bioactive molecules (cAMP and Dex) into the CaP coatings did not improve bone growth compared to the BE group. Implant stability quotients (ISQ) increased in each group after 4 weeks of healing but were not significantly different between the groups. A good correlation was observed between ISQ and BS/TS 0.5 mm indicating that RFA is a non-invasive method that can be used to assess the osseointegration of implants. In conclusion, the CaP coating enhanced bone formation around the implants, which was correlated to stability measured by resonance frequency analysis. Furthers studies need to be conducted in order to explore the benefits of incorporating bioactive molecules into the coatings for peri-implant bone healing.  相似文献   

12.
The demand of prostheses and implants made from biomaterials grows as a result of the rising age of patients. For biomaterials, such as those found in joint‐ or hip‐prostheses, that are in direct contact with the organism, not only mechanical stability is required, but also biocompatibility as well as their ability to support bone regeneration. Taking this into account, a thin‐walled bioactive titanium cobalt‐based brazing coating on high‐performance oxide ceramics (Al2O3) has been developed. Here, the coating process offers an economical and at the same time technologically simple way for the coating ceramic materials. The biocompatible coating has been enhanced by addition of bioactive particles made of bioglass and calcium phosphates in order to improve bone formation. The reactions between the bioactive particles and the brazing alloys, as well as the particular melting behavior, were determined through thermo analytical methods. The structures of the brazing alloys enriched with bioactive particles were investigated through metallographical methods. The combination of three bioactive additives and two brazing alloys were analyzed in terms of their melting behavior and the resulting porosity, the parameters of the brazing process have been gradually optimized. The results show, that the combination of calcium phosphate particles and Ti–Co alloys effectively meet the requirements for a defined porous, biocompatible brazing coating.  相似文献   

13.
Fluorapatite-coated implants have been studied for the first time under non-optimal tissue conditions and have shown promising results. The influence of arthritis on the tissue response to implants coated with fluorapatite (FA) was studied in an arthritis model. Immune complex-induced arthritis was elicited in the right knee-joint of eight rabbits while the contralateral joint served as control. Ti-6Al-4V cylinders, plasma-spray coated with FA were implanted in the patellar groove (PG) and medial femoral condyle (MC) in each knee for 6 weeks. Histology showed a close bone-to-implant contact at the lateral surface of the implants without any intervening soft tissue or inflammatory cells. Histomorphometry revealed no differences in bone apposition between control and arthritic joints, but the MC-implants showed more bone apposition than the PG-implants. Parts of the implant surface were not covered by bone, but were in contact with bone marrow. The FA coating on the implant sides did not show signs of resorption in the control and arthritic joints, but the coating on the upper surface of the implants was partially resorbed in both the control and arthritic joints. The arrangement and composition of the regenerating tissue in this location was profoundly influenced by the inflammatory process in the arthritic joints. In a previous study, using the same arthritis model, an impaired bone formation was found around commercially pure titanium implants in arthritic joints. In the present study, the unimpaired bone formation around FA-implants in the arthritic joints indicates that an FA coating adds advantageous properties to metal implants used in tissues influenced by an on-going inflammation.  相似文献   

14.
Nano-structured titanium coating was obtained by alkali treating the vacuum plasma sprayed samples following hot water immersing for 24 h. The influences of the surface microstructure on the biological performance were studied. A canine model was applied for in vivo evaluation of the bone bonding ability of the coatings. The histological examination results demonstrate that new bone was formed more rapidly on the nano-structured coating implants and grew into the porosity than the as-sprayed one. After 4 weeks implantation, the nano-structured implants were found to appose directly to the surrounding bone while large lacunae could still be observed at the interface between the as-sprayed samples and bone. All these results indicate that a nano-structured surface on the porous titanium coating is favorable for bone bonding.  相似文献   

15.
Ionic substitution is a powerful tool to improve the biological performance of calcium phosphate based materials. In this work, we investigated the response of primary cultures of rat osteoblasts derived from osteopenic (O-OB) bone to strontium substituted hydroxyapatite (SrHA), and to hydroxyapatite (HA) as reference material, compared to normal (N-OB) bone cells. Strontium (Sr) and calcium (Ca) cumulative releases in physiological solution are in agreement with the greater solubility of SrHA than HA, whereas the differences between the two materials are levelled off in DMEM, which significantly reduced ion release. O-OB cells grown on SrHA exhibited higher proliferation and increased values of the differentiation parameters. In particular, Sr substitution increased the levels of proliferation, alkaline phosphatase, and collagen type I, and down-regulated the production of interleukin-6 of O-OB cells, demonstrating a promising future of SrHA in the treatment of bone lesions and defects in the presence of osteoporotic bone.  相似文献   

16.
Han Y  Chen DH  Zhang L 《Nanotechnology》2008,19(33):335705
Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO(3)), and TiO(2) were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530?V for 0.1-5?min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5?min presents a microporous structure of SrHA/SrHA-SrTiO(3)/SrTiO(3)-TiO(2) multilayers, in which the SrHA outermost layer and the SrHA-SrTiO(3) intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO(3)/SrTiO(3)-TiO(2) multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO(2) coating, and is expected to have an important photocatalytic application.  相似文献   

17.
Implants Coated with Hydroxyaptit: The Option for Joining Metal to Hard Tissue Load bearing components for artificial joints are made of bioinert alloys. These implants can only be joint to bone by form closure or frictional connection. Coating bioinert implants with bioactive hydroxyaptite ceramics (HA) offers the option to have a biological interaction between the bone and the coated implant. This way tensile forces can be transfered to the implant. This papers reviews material properties and recommendations how to design plasma sprayed HA-coatings for total hip replacement. There is clinical proof that due to the enhanced interaction between the HA-coating and the implants an excellent bonding can be achieved, i. e. long-term osseointegration or biological/chemical interaction between inert anorganic materials and vital tissue. There are no technical problems coating implants with HA. Clinical results based on more than 10 years are available.  相似文献   

18.
To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800°C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65°C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65°C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65°C compared to 37°C. All PVD-coatings showed HA growth after 1 week in PBS at 37°C, thus even very thin coatings of crystalline titanium oxide coatings are bioactive.
H. EngqvistEmail:
  相似文献   

19.
Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.  相似文献   

20.
Fabrication of bioactive and mechanical matched bone substitutes is crucial for clinical application in bone defects repair. In this study, nano-hydroxyapatite/polyamide (nHA/PA) composite was coated on injection-moulded PA by a chemical corrosion and phase-inversion technique. The shear strength, gradient composition and pore structure of the bioactive coating were characterized. Osteoblast-like MG63 cells were cultured on pure PA and composite-coated PA samples. The cells'' adhesion, spread and proliferation were determined using MTT assay and microscopy. The results confirm that the samples with the nHA/PA composite coating have better cytocompatibility and have no negative effects on cells. To investigate the in vivo biocompatibility, both pure PA and composite-coated PA cylinders were implanted in the trochlea of rabbit femurs and studied histologically, and the bonding ability with bone were determined using push-out tests. The results show that composite-coated implants exhibit better biocompatibility and the shear strength of the composite-coated implants with host bone at 12 weeks can reach 3.49 ± 0.42 MPa, which is significantly higher than that of pure PA implants. These results indicate that composite-coated PA implants have excellent biocompatibility and bonding abilities with host bone and they have the potential to be applied in repair of bone defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号