首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study evaluated the growth potential and differentiation of human fetal spinal cord (FSC) tissue in the injured adult rat spinal cord under different lesion and grafting conditions. Donor tissue at 6-9 weeks of gestational age was obtained through elective abortions and transplanted either immediately into acute resection (solid grafts) or into chronic contusion (suspension and solid grafts) lesions (i.e., 14-40 days after injury) in the thoracic spinal cord. The xenografts were then examined either histologically in plastic sections or immunocytochemically 1-3 months postgrafting. Intraspinal grafts in acute lesions demonstrated an 83% survival rate and developed as well-circumscribed nodules that were predominantly composed of immature astrocytes. Solid-piece grafts in chronic contusion lesions exhibited a 92% survival rate and also developed as nodular masses. These grafts, however, contained many immature neurons 2 months postgrafting. Suspension grafts in chronic contusion lesions had an 85% survival rate and expanded in a nonrestrictive, diffuse pattern. These transplants demonstrated large neuronally rich areas of neural parenchyma. Extensive neuritic outgrowth could also be seen extending from these grafts into the surrounding host spinal cord. These findings show that human FSC tissue reliably survives and differentiates in both acute and chronic lesions. However, both the lesion environment and the grafting techniques can greatly influence the pattern of differentiation and degree of host-graft integration achieved.  相似文献   

2.
Fetal spinal cord tissue grafts have been advocated as a possible repair strategy for spinal cord injury. In the present study, we used intraocular spinal cord grafts to model the interactions which may occur between fetal and adult spinal cord after making such a graft and to study to which extent functional connections can be expected to occur between the host and graft tissue. We first grafted fetal spinal cord to the anterior chamber of the eye where it was allowed to mature. A second piece of fetal spinal cord was then sequentially grafted in contact with the first graft. Electrophysiological recordings made from the older graft while electrically stimulating the younger graft provided evidence for an excitatory innervation from the younger spinal cord graft to the mature spinal cord which appeared to be glutamatergic. However, we only rarely found excitatory inputs from the first, mature spinal cord graft to the younger graft. Fiber connections between the two spinal cord grafts were verified by retrograde tracing and neurofilament immunohistochemistry. In no case was a trophic influence on graft volume observed between spinal cord grafts regardless of whether the transplantations were performed sequentially or at the same time. Even the introduction of a second graft to immature spinal cord tissue was ineffective. In contrast, we found a marked trophic, neuron-rescuing effect of spinal cord grafts upon cografts of fetal dorsal root ganglia. This latter observation is consistent with the hypothesis that spinal cord tissue can exert a trophic effect on developing sensory ganglia and demonstrates that many sensory neurons can survive in the presence of a central target and in the absence of the appropriate peripheral target. These intraocular experiments predict that fetal spinal cord grafted to the injured adult spinal cord may develop effective excitatory inputs with the host, while host-to-graft inputs may develop to a considerably smaller extent. Our results also suggest that the adult spinal cord does not exert marked trophic effects on growth of fetal spinal cord, while it does exert a trophic influence on central projections of dorsal root ganglia.  相似文献   

3.
The ability of solid pieces of transplanted human embryonic spinal cord to survive, grow, and integrate with adult rat host spinal cord tissue was investigated. Unilateral cavities were surgically created at vertebral level T12-T13 in 10 athymic nude rats and 5 regular Sprague-Dawley rats. Seven of the athymic rats acutely received a human spinal cord graft, while the remaining 8 rats served as controls, with cavities alone. After 6 months the morphological outcome was evaluated with cresyl violet and with immunohistochemistry using antibodies toward human-specific neurofilament (hNF), human-specific Thy-1 (Thy-1), neurofilament, glial fibrillary acidic protein, serotonin (5-HT), and tyrosine hydroxylase (TH). The in situ morphology of the human embryonic spinal cord was also investigated and compared with grafts that were six months older. Solid human embryonic spinal cord grafts showed a 100% survival rate, grew to fill the volume of the cavity in a noninvasive manner, and expressed human specific antigens 6 months postgrafting. Thy-1 immunoreactivity (IR) was demonstrated up to 8 mm rostral to the graft suggestive of graft-derived fiber outgrowth. hNF-IR fibers and 5-HT- and TH-IR fibers traversed the graft-host border for a few hundred micrometers, respectively. Finally, our findings suggest that grafted solid pieces of human embryonic spinal cord minimize cystic deformations seen in the adult rat spinal cord with a unilateral cavity.  相似文献   

4.
The injured adult mammalian spinal cord shows little spontaneous recovery after injury. In the present study, the contribution of projections in the dorsal half of the spinal cord to functional loss after adult spinal cord injury was examined, together with the effects of transgenic cellular delivery of neurotrophin-3 (NT-3) on morphological and functional disturbances. Adult rats underwent bilateral dorsal column spinal cord lesions that remove the dorsal corticospinal projections or underwent more extensive resections of the entire dorsal spinal cord bilaterally that remove corticospinal, rubrospinal, and cerulospinal projections. Long-lasting functional deficits were observed on a motor grid task requiring detailed integration of sensorimotor skills, but only in animals with dorsal hemisection lesions as opposed to dorsal column lesions. Syngenic primary rat fibroblasts genetically modified to produce NT-3 were then grafted to acute spinal cord dorsal hemisection lesion cavities. Up to 3 months later, significant partial functional recovery occurred in NT-3-grafted animals together with a significant increase in corticospinal axon growth at and distal to the injury site. These findings indicate that (1) several spinal pathways contribute to loss of motor function after spinal cord injury, (2) NT-3 is a neurotrophic factor for the injured corticospinal projection, and (3) functional deficits are partially ameliorated by local cellular delivery of NT-3. Lesions of the corticospinal projection may be necessary, but insufficient in isolation, to cause sensorimotor dysfunction after spinal cord injury in the rat.  相似文献   

5.
The capacity of embryonic spinal cord tissue in the repair of injured structure of spinal cord has been noted for years. In order to investigate the embryonic spinal cord graft in the repair of motor function of injured spinal cord, the embryonic spinal cord tissue was transplanted to the hemisection cavity in spinal cord in adult rat. One hundred adult Wistar Rats were used to simulate the hemisectional injury of spinal cord by drilling 2-3 mm cavity in lumbar enlargement. Sixty rats were treated with rat embryonic spinal cord tissue grafting while the other forty were chosen as control. The outcome was evaluated according the combined behavioural score (CBS) and motor evoked potential (MEP) in the 1, 2, 4 and 12 weeks. The grafting group was superior to the control as assessed by CBS (P < 0.05), especially within 4 weeks. (P < 0.01). The restoration of the latent peak of early wave(P1, N1) was better in the grafting group, too. This suggested that embryonic spinal cord graft could improve the recovery of motor function of injured spinal cord in adult rat. The effect of the embryonic spinal cord tissue graft might be concerned with its secretion of several kinds of neurotrophic factors, nerve growth factor, nerve transmitted factor, or adjustment of hormone.  相似文献   

6.
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 micron of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1-2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert a neurotropic influence on injured mature CNS neurons by increasing their axonal growth within a transplant.  相似文献   

7.
In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the plasticity and the repair capacities of the mammalian spinal cord and of its muscular connections.  相似文献   

8.
The electrophysiological integrity of the adult rat spinal cord was assessed at the lumbar, lower cervical and cortical levels after the animals sustained a severe contusion injury at the mid-thoracic level (T8) and received either carbon filament cultured with fetal spinal cord tissue implants, fetal tissue implants, or carbon filament implants alone. Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) were recorded from all animal groups at the end of the 8-week survival period. The results of this study demonstrate that the spinal cord injured animals that received carbon filament cultured with fetal spinal cord tissue implants had the highest degree of electrophysiological recovery, indicating that this combination plays an important role in promoting recovery after injury.  相似文献   

9.
We compared the effects of peripheral nerve grafts, embryonic spinal cord transplants and brain-derived neurotrophic factor (BDNF) on the survival and axon regeneration of adult rat spinal motor neurons undergoing retrograde degeneration after ventral root avulsion. Following implantation into the dorsolateral funiculus of the injured spinal cord segment, neither a peripheral nerve graft nor a combination of peripheral nerve graft with embryonic spinal cord transplant could prevent the retrograde motor neuron degeneration induced by ventral root avulsion. However, intrathecal infusion of BDNF promoted long-term survival of the lesioned motor neurons and induced abundant motor axon regeneration from the avulsion zone along the spinal cord surface towards the BDNF source. A combination of ventral root reconstitution and BDNF treatment might therefore be a promising means for the support of both motor neuron survival and guided motor axon regeneration after ventral root lesions.  相似文献   

10.
11.
The contribution of chondroitin sulfate proteoglycan (CSPG) in the suppression of axonal growth in rat spinal cord has been examined by means of an in vitro bioassay in which regenerating neurons are grown on tissue section substrata. Dissociated embryonic chick dorsal root ganglionic neurons were grown on normal and injured adult spinal cord tissue sections treated with chondroitinases. Neuritic growth on normal spinal cord tissue was meager. However, both the percentage of neurons with neurites and the average neurite length were substantially greater on sections treated with chondroitinase ABC. Enzymes that specifically degraded dermatan sulfate or hyaluronan were ineffective. Neuritic growth was significantly greater on injured (compared to normal) spinal cord and a further dramatic increase resulted from chondroitinase ABC treatment. Neurites grew equally within white and gray matter regions after chondroitinase treatment. Observed increases in neurite outgrowth on chondroitinase-treated tissues were largely inhibited in the presence of function-blocking laminin antibodies. These findings indicate that inhibitory CSPG is widely distributed and predominant in both normal and injured spinal cord tissues. Additionally, inhibitory CSPG is implicated in negating the potential stimulatory effects of laminin that might otherwise support spinal cord regeneration.  相似文献   

12.
In a rat model of corneal transplantation, Fischer 344 (RT1(lv1)) rats received orthotopic corneal isografts or Wistar-Furth (RT1(u)) donor allografts. Rejection was observed in 25 of 26 allograft recipients, at a median time of 18 days, with all isografts surviving > 100 days. Flow cytometric analysis of aqueous humour identified cellular infiltration of the aqueous at the time of allograft rejection, in contrast to the acellular aqueous found in isografts at corresponding times following transplantation. A higher proportion of CD8+ than CD4+ cells was found at days 1-3 following rejection, whereas there was a higher proportion of CD4+ cells at days 5-8. No changes in peripheral blood T cell subsets were found at the time of rejection. Immunohistochemical analysis of cells infiltrating recipient iris and grafted cornea undertaken at days 1-2, 4 and 7-10 following onset of rejection, demonstrated inflammatory cells in the graft epithelium, stroma and aggregated on the endothelium. Large numbers of macrophages, T cells (CD4+ > CD8+ at all time points), natural killer (NK) cells and neutrophils were detected in graft tissue at days 1-2 and 4, diminishing after that time. Most infiltrating cells expressed MHC class II antigen, and a smaller number expressed IL-2R. Expression of the co-stimulatory marker B7 was identified in a few cells at day 4 in the region of the graft-host wound. The immune response in graft rejection was characterized at day 4 also by expression of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells of iris and corneal vessels, demonstration of interferon-gamma on mononuclear cells in the peripheral (recipient) cornea, and tumour necrosis factor-alpha on aggregated mononuclear cells on the graft, but not recipient, endothelium. Only sparse cellular infiltrates were found in isograft controls, with inflammation located at the graft-host wound. These findings suggest that inflammatory cells reach a corneal allograft by two routes--from vessels in the peripheral recipient cornea, and from vessels in the recipient iris via the aqueous humour. Different aqueous and intragraft T cell subset proportions were seen early in rejection, although a preponderance of CD4+ cells was found in both aqueous and graft at later times.  相似文献   

13.
Mechanical injury to the adult mammalian spinal cord results in permanent morphological disintegration including severance/laceration of brain-cord axons at the lesion site. We report here that some of the structural consequences of injury can be averted by altering the cellular components of the lesion site with x-irradiation. We observed that localized irradiation of the unilaterally transected adult rat spinal cord when delivered during a defined time-window (third week) postinjury prevented cavitation, enabled establishment of structural integrity, and resulted in regrowth of severed corticospinal axons through the lesion site and into the distal stump. In addition, we examined the natural course of degeneration and cavitation at the site of lesion with time after injury, noting that through the third week postinjury recovery processes are in progress and only at the fourth week do the destructive processes take over. Our data suggest that the adult mammalian spinal cord has innate mechanisms required for recovery from injury and that timed intervention in certain cellular events by x-irradiation prevents the onset of degeneration and thus enables structural regenerative processes to proceed unhindered. We postulate that a radiation-sensitive subgroup of cells triggers the delayed degenerative processes. The identity of these intrusive cells and the mechanisms for triggering tissue degeneration are still unknown.  相似文献   

14.
Advances in the purification and expansion of Schwann cells (SCs) from adult human peripheral nerve, together with biomaterials development, have made the construction of unique grafts with defined properties possible. We have utilized PAN/PVC guidance channels to form solid human SC grafts which can be transplanted either with or without the channel. We studied the ability of grafts placed with and without channels to support regeneration and to influence functional recovery; characteristics of the graft and host/graft interface were also compared. The T9-T10 spinal cord of nude rats was resected and a graft was placed across the gap; methylprednisolone was delivered acutely to decrease secondary injury. Channels minimized the immigration of connective tissue into grafts but contributed to some necrotic tissue loss, especially in the distal spinal cord. Grafts without channels contained more myelinated axons (x = 2129 +/- 785) vs (x = 1442 +/- 514) and were larger in cross-sectional area ( x = 1.53 +/- 0.24 mm2) vs (x = 0.95 +/- 0.86 mm2). The interfaces formed between the host spinal cord and the grafts placed without channels were highly interdigitated and resembled CNS-PNS transition zones; chondroitin sulfate proteoglycans was deposited there. Whereas several neuronal populations including propriospinal, sensory, motoneuronal, and brainstem neurons regenerated into human SC grafts, only propriospinal and sensory neurons were observed to reenter the host spinal cord. Using combinations of anterograde and retrograde tracers, we observed regeneration of propriospinal neurons up to 2.6 mm beyond grafts. We estimate that 1% of the fibers that enter grafts reenter the host spinal cord by 45 days after grafting. Following retrograde tracing from the distal spinal cord, more labeled neurons were unexpectedly found in the region of the dextran amine anterograde tracer injection site where a marked inflammatory reaction had occurred. Animals with bridging grafts obtained modestly higher scores during open field [(x = 8.2 +/- 0.35) vs (x = 6.8 +/- 0.42), P = 0.02] and inclined plane testing (x = 38.6 +/- 0. 542) vs (x = 36.3 +/- 0.53), P = 0.006] than animals with similar grafts in distally capped channels. In summary, this study showed that in the nude rat given methylprednisolone in combination with human SC grafts, some regenerative growth occurred beyond the graft and a modest improvement in function was observed.  相似文献   

15.
Previous attempts to generate myelin in the myelin-deficient rat spinal cord by transplanting mouse glia were not successful. In order to determine whether this result was due to graft rejection or to interspecies mismatch of cellular or molecular components at the axoglial junction, we have repeated the experiment in cyclosporine-treated rats. Our results show that in the immunosuppressed hosts, foetal glial xenografts form an abundance of myelin within the dorsal columns at or near the injection site about two weeks after the operation. In some cases, myelination extends virtually across the entire width of the dorsal columns. Ultrastructurally, the myelin sheaths are normal in all respects, including the presence of the 'radial component'. The lateral edges of the myelin lamellae form typical paranodal axoglial junctions, some displaying periodic 'transverse bands'. We infer that previous mouse to rat xenograft failures reflect host immune response rather than mismatch of heterologous junctional components. We also compared foetal, early post-natal and adult xenografts. Foetal donor cells, containing an abundance of precursors but virtually no mature oligodendrocytes, are more effective than neonatal donor cells in forming myelin, and after adult grafts, we found no myelin formation. Thus, in xenografts, as in allografts, foetal precursor cells are far more suitable than glia from mature donors in generating significant amounts of myelin.  相似文献   

16.
The absence of fiber regrowth in the injured spinal cord and brain is influenced by several different factors and mechanisms. Among these are factors which inhibit neurite growth which are found on the surface of oligodendrocytes and central myelin. Their neutralization by a specific antibody allowed regeneration of transected corticospinal tract fibers in the adult rat spinal cord. Using a recently introduced novel neuroanatomical tracer, biotin-dextran-amine, we demonstrate the extensive regenerative sprouting of lesioned corticospinal fibers in the lesioned adult spinal cord. In the presence of the antibody against the myelin-associated neurite growth inhibitors, some of these fibers grew over remaining tissue bridges into the caudal spinal cord. They branched extensively in the lumbar spinal cord segments. These branches were decorated with synapse-like boutons. This neuroanatomical configuration probably contributes importantly to the functional recovery observed earlier in these antibody-treated animals.  相似文献   

17.
D Martin 《Canadian Metallurgical Quarterly》1994,149(5-7):279-89; discussion 289-91
After a central nervous system (CNS) injury, there is only an "abortive regeneration" of axons, while injured axons regenerate vividly in the peripheral nervous system (PNS). This difference is due, at least in part, to the existence in the periphery of Schwann cells and of growth promoting proteins they synthetize. One strategy to promote regrowth of central axons can be therefore, to modify (i.e. "peripheralize") the microenvironment by transplanting biologically active Schwann cells into the lesion site. In a rat model of traumatic paraplegia by inflation of a subdural microballoon, we performed syngeneic transplants of Schwann cells. These cells are cultured from adult dorsal root ganglia and can be kept in vitro for several months. They are transplanted in the injured spinal cord. The grafted Schwann cells are well integrated in the host tissue without detectable inflammatory reaction. Cystic cavitation and astrogliosis are reduced in grafted animals as compared to injured, non-grafted animals. The transplant is invaded by abundant, mainly unmyelinated axons which are immunoreactive for substance P, VIP or CGRP, i.e. transmitters known to be present in DRG afferents. Supraspinal afferents containing 5HT, TH or CCK accumulate at the rostral margin of the graft. Experimental procedures trying to stimulate the invasion of the graft by descending fibers, i.e. by inducing a chemoattraction are therefore of crucial importance for functional recovery.  相似文献   

18.
The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional impairment. To induce axonal regeneration in the transected adult rat spinal cord, we have used the axonal growth-promoting properties of adult olfactory bulb ensheathing glia (EG). Schwann cell (SC)-filled guidance channels were grafted to bridge both cord stumps, and suspensions of pure (98%) Hoechst-labeled EG were stereotaxically injected into the midline of both stumps, 1 mm from the edges of the channel. In EG-transplanted animals, numerous neurofilament-, GAP-43-, anti-calcitonin gene-related peptide (CGRP)-, and serotonin-immunoreactive fibers traversed the glial scars formed at both cord-graft interfaces. Supraspinal serotonergic axons crossed the transection gap through connective tissue bridges formed on the exterior of the channels, avoiding the channel interior. Strikingly, after crossing the distal glial scar, these fibers elongated in white and periaqueductal gray matter, reaching the farthest distance analyzed (1.5 cm). Tracer-labeled axons present in SC grafts were found to extend across the distal interface and up to 800 microm beyond in the distal cord. Long-distance regeneration (at least 2.5 cm) of injured ascending propriospinal axons was observed in the rostral spinal cord. Transplanted EG migrated longitudinally and laterally from the injection sites, reaching the farthest distance analyzed (1.5 cm). They moved through white matter tracts, gray matter, and glial scars, overcoming the inhibitory nature of the CNS environment, and invaded SC and connective tissue bridges and the dorsal and ventral roots adjacent to the transection site. Transplanted EG and regenerating axons were found in the same locations. Because EG seem to provide injured spinal axons with appropriate factors for long-distance elongation, these cells offer new possibilities for treatment of CNS conditions that require axonal regeneration.  相似文献   

19.
Modern techniques of bone allograft surgery provide a treatment modality for management of difficult skeletal defects. In oncological limb-salvage surgery, allograft reconstructions permit re-establishment of skeletal continuity and function after a wide resection of bone tumour. Bone allografts are increasingly used in salvage of difficult bone stock deficiencies following failed total joint replacements. Union between the allograft and the host bone takes place slowly and the use of autogenous bone graft at the graft-host junction is recommended for induction of repair. Internal repair (revascularization and substitution of the original graft bone with new host bone) also progresses slowly and seems to be confined only to the superficial surface and the ends of the graft. Biomechanically, a massive allograft may serve a structural function in the absence of advanced revascularization and creeping substitution processes. Infection of an allograft is a disastrous complication, whereas non-union of the graft-host junction and fracture of the graft are amenable to surgical treatment. Osteochondral allografts tend to show gradual deterioration of the articular cartilage with time, necessitating occasionally late resurfacing arthroplasty. It is evident that there is more active immune response to osteochondral grafts than was thought previously. Bone allografts induce cell-mediated and antibody-mediated cytotoxicity specific for donor antigens similar to that seen after organ transplantations. Not only the basic mechanisms of bone allograft rejection but also the clinical features of bone allograft rejection are poorly characterized. Clinically, new non-invasive imaging techniques should be applied in determining the metabolic activity of bone in order to find the optimal loading of healing allografts. Although the clinical results of massive bone allografts are still not completely predictable, the method has proved to be a technically and biologically feasible alternative for non-biological skeletal reconstructions.  相似文献   

20.
The multiple cellular and molecular processes induced by injury to the central nervous system (CNS) are still poorly understood. In the present study, we investigated the response of the vasculature and the expression of mRNA for the angiogenic vascular endothelial growth factor (VEGF) following X-irradiation of the spinal cord in the newborn and following traumatic spinal cord injury in the adult rat. Both lesion models induced changes in the density and the distribution pattern of blood vessels: while X-irradiation led to a permanent local increase in vascular density in the fibre tracts of the exposed segments, a transient local sprouting of vessels was induced upon traumatic spinal cord injury. In situ hybridization showed that an increase of VEGF mRNA anticipated and overlapped with the vascular responses in both lesion models. In addition to the temporal correlation of VEGF expression and vascular sprouting, there was a clear correlation in the spatial distribution patterns. Following X-irradiation, the expression of VEGF mRNA was restricted to the fibre tracts, precisely the areas where the changes in the vasculature were observed later on. Upon transection in the adult animal, VEGF was mainly detectable at the border of the lesion area, where the transient increase in vascular density could be observed. Interestingly, according to the type of lesion applied, astrocytes (X-irradiation) or inflammatory cells (presumably microglial cells or macrophages; traumatic lesion) are the cellular sources of VEGF mRNA. Our results strongly indicate that VEGF is crucially involved in mediating vascular changes following different types of injury in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号