首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
《应用化工》2022,(Z1):191-193
提取煤矸石中的有价元素是煤矸石资源化利用的有效方法之一,本研究针对高铁、低铝、低热值煤矸石,利用稀硫酸浸出其中的铁,达到脱铁富铝的目的。分别考察酸浓度、酸浸温度、液固比、酸浸时间等因素对铁浸出率的影响。结果表明,铁的最佳溶出条件为:硫酸浓度15%,酸浸温度45℃,液固质量比4:1,酸浸时间4h。可以证明在上述条件下,铁的浸出率可以达到82.13%。  相似文献   

2.
范剑明 《无机盐工业》2019,51(11):65-68
分级研究了热活化条件下高铝煤矸石在盐酸和氢氧化钠溶液中的铝硅溶出行为。采用X射线衍射仪(XRD)、扫描电镜(SEM)和比表面积测定仪(BET)对煤矸石试样做了表征分析。通过正交实验分析了反应温度、反应时间、初始酸碱浓度和固液比对热活化处理后高铝煤矸石中Al2O3和酸浸渣SiO2溶出率的影响。结果表明:酸浸溶出Al2O3反应过程中,固液质量比和酸浸时间对溶出率的影响最为显著,酸浸过程的最优工艺条件:初始盐酸质量分数为20%、酸浸温度为90 ℃、酸浸时间为2.5 h、固液质量比为1∶6,在此条件下,Al2O3的浸取率达82.95%;强碱溶解酸浸渣溶出SiO2反应过程最优工艺条件:碱溶温度为95 ℃、碱溶时间为2.0 h、NaOH质量分数为20%、固液质量比为1∶10,在此条件下SiO2溶出率为69.74%,碱溶温度和碱液浓度对溶出率的影响最为显著。  相似文献   

3.
为解决实际生产中煤矸石中和渣固化-酸化一体化操作物料固化固结强度高、转移困难等问题,本研究以贵州盘州中试煤矸石中和渣为原料,以98酸为酸浸介质,以溶出率为主要指标,将以往"高温酸化→转移→溶出"的技术路线改为"低温固化→转移→高温酸化→溶出",并结合XRD、SEM表征手段探明中和渣固化反应机理。结果表明:50℃下固化体形态在第3天时达到终凝,酸化温度170℃、酸化时间4 h、酸化酸渣比1. 2∶1、溶出液固比4∶1、溶出时间60 min、溶出温度80℃,中和渣中有价元素溶出率分别为:钛82. 63%、铁96. 48%、铝98. 33%、钙87. 72%、镁95. 31%,酸渣中Si O2质量分数> 96%,该技术路线解决了物料转移难的问题,同时酸溶物溶出高,实现了酸渣富硅除杂。  相似文献   

4.
煤矸石提取氧化铝工艺研究   总被引:3,自引:0,他引:3  
研究以萤石为助剂煅烧活化煤矸石,考察了煤矸石煅烧活化和溶出条件对煤矸石中氧化铝溶出率的影响。实验表明,最佳煅烧活化条件:石灰石与煤矸石质量比为2.5;萤石用量为1%(质量分数);煅烧温度为1 260℃;烧成时间为90 min。溶出的最佳工艺条件:溶出温度为85℃;溶出时间为2.0 h;Na2CO3质量分数为9%;液固比为3.5(体积质量比,mL/g)。在此条件下,煤矸石中氧化铝的溶出率高达90.5%。  相似文献   

5.
以贵州盘县煤矸石为研究对象,为解决其工业生产提取铝铁时酸耗量大、酸利用率低及后续铝铁产品分离困难等问题,根据其矿物组成特点,本文首次采用低温中和-加压酸浸工艺对铝铁提取进行了详细研究。室温下中和最优工艺条件为20%理论酸耗、浸出时间120min、液固比3∶1(硫酸溶液与固体的质量比,以g/g计);以中和渣为原料,煤矸石理论酸耗为基础,加压酸浸最优工艺条件为浸出时间120min、浸出温度150℃、液固比3.5∶1(硫酸溶液与固体的质量比,以g/g计)。在此条件下,氧化铁浸出率为98.37%,氧化铝浸出率为95.77%,酸浸渣灰分中氧化硅质量分数为90.2%,氧化钛质量分数为9.18%。以最优工艺条件下的酸浸液循环中和新鲜煤矸石,得到的铝铁提取液中氧化铁浓度为57.95g/L,氧化铝浓度为62.20g/L。相比常规酸浸工艺具有酸耗低、酸利用率高等优点。借助X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)和扫描电子显微镜(SEM)等分析手段,初步对两步溶出过程进行了机理分析,为煤矸石工业生产提取铝铁提供了新路线和理论支撑。  相似文献   

6.
本文以煤矸石中和渣为研究对象,采用加浓硫酸酸化、浸提的方法提取有价元素铝、钛.研究考察了酸渣比、反应温度、溶解时间、溶解温度等因素对中和渣中铝、钛溶出的影响规律,以单因素实验为基础,进而进行正交实验,优化浸提中和渣中铝、钛的工艺条件.实验结果表明:在本研究的条件下,中和渣酸浸提取铝、钛的最优工艺条件为:酸渣比1.5、反应温度170℃、溶解时间60 min、溶解温度80℃,此时铝、钛溶出率分别达到98.32%、92.28%.用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)等手段对煤矸石、中和渣及酸渣的物相和微观形貌进行表征,分析结果表明:中和渣酸浸后,酸渣中只有SiO2和少量CaSO4存在,说明煤矸石中和渣中的铝、钛通过酸浸可以充分浸取.该法为煤矸石资源化高效利用探索出一条新的工艺思路.  相似文献   

7.
研究利用煤矸石中的硅元素制取硅酸钠,先将煤矸石粉在750 ℃下煅烧2 h,除去有机质并破坏了煤矸石中的高岭石等矿物的晶型结构,再将煅烧过的煤矸石粉在95 ℃、液固比(mL/g)为8∶1、质量分数为40%的硫酸中酸浸5 h,煤矸石煅烧粉中的铁和铝等金属杂质离子的总去除率为86.93%;还研究了碱融活化条件对硅元素溶出率的影响,获得了适宜的碱融活化条件:m(酸浸粉)∶m(碳酸钠)=1∶1.5、碱融温度为800 ℃、碱融时间为2 h。在此条件下,硅元素溶出率大于75%,最终获得了硅酸钠溶液。  相似文献   

8.
采用浸提法提取煤矸石中和渣酸浸物中的有价元素,考察了溶出温度、溶出时间和溶出液固质量比对酸浸物溶出过程的影响;以单因素实验为基础,进行正交实验,优化溶出工艺条件,用X射线衍射(XRD)和扫描电镜(SEM)表征煤矸石中和渣酸浸物、酸化产物及滤渣的物相和微观形貌。结果表明,酸浸物溶出最优工艺条件为液固质量比3:1、溶出时间40 min、溶出温度80℃,此时有价元素氧化物的溶出率分别为TiO2 82.63%, Fe2O3 96.48%, Al2O3 98.33%, CaO 87.72%, MgO 95.31%。提取后滤渣中只有SiO2和少量TiO2及CaSO4存在,表明煤矸石中和渣酸浸物中的有价元素通过该溶出工艺可充分溶出。  相似文献   

9.
以低值煤矸石为原料,98%硫酸作酸浸介质,采用微波加热方式提取煤矸石中酸溶物,经溶解制备酸浸液.利用煤矸石酸浸液中Fe2和Al3+、Ti4水解pH值的差异分离铝、铁、钛,制备氧化铝、氧化铁和二氧化钛产品.实验研究了煤矸石酸浸液初步分离的pH值、温度、时间对Al3+、Ti4+的水解率及铁损失的影响,并对分离液制备氧化铁红、铝钛混合物二次分离及铝、钛产品的制备工艺进行了研究,结果表明:水解最佳条件为pH =4.5、温度90℃、时间3h,水合二氧化钛洗涤pH值为1.5,此条件下获得了符合国家相关标准的氧化铝和氧化铁红产品,钛初产品二氧化钛含量达94.75%.  相似文献   

10.
《应用化工》2022,(Z1):57-60
以高铁低铝煤矸石为原料,研究了酸浸提铝的工艺,考察了硫酸浓度、酸浸温度、酸浸时间以及液固比对酸浸提铝的影响,并对氧化铝的酸浸出过程进行了动力学分析,结果表明,最适宜浸出条件为:酸浓度65%,硫酸浸温度125℃,酸浸时间4 h,液固比3∶1,在此条件下氧化铝的浸出率为88. 86%。硫酸浸取煤矸石中氧化铝的化学反应符合粒径缩小收缩芯模型,该化学反应的动力学方程为1-(1-ω)2/3=kt;反应活化能E=42. 78 k J/mol,酸浸出过程为化学反应控制。  相似文献   

11.
钛石膏是钛白粉生产过程中利用石灰中和钛白废酸而形成的一种工业固体废弃物。同时由于钛石膏含有多种有价金属元素,也是重要的二次资源,必须加以回收利用。利用盐酸浸出钛石膏,回收有价金属元素,实现钛石膏的综合利用。研究了盐酸浓度、浸出温度、浸出时间以及液固质量比等因素对浸出效果的影响。实验结果表明,在盐酸质量分数为15%、浸出时间为60 min、浸出温度为90 ℃、液固质量比为6∶1时,金属铁的浸出率>90%。该处理工艺流程简单,处理成本低,为钛石膏的利用提供一种新途径。  相似文献   

12.
曹鹏 《无机盐工业》2019,51(9):54-56
在硫酸法钛白粉生产过程中,钛精矿酸解产生的固相物难以溶解是限制钛白粉产能的主要因素。为降低其影响,对酸解固相物进行了X射线衍射(XRD)分析;对钛精矿酸解主反应影响因素包括酸矿比、反应酸浓度和引发温度等对固相物溶解率的影响进行了对比实验。XRD分析表明,钛精矿酸解过程产生的钛的硫酸盐并没有形成晶体,固相物的溶解只是物理过程。钛精矿酸解主反应影响因素对比实验结果表明,影响钛精矿酸解固相物溶解难易程度的因素从大到小的顺序为反应酸浓度、引发温度,酸矿比没有影响。随着反应酸浓度升高,主反应速率加快,脱水率上升,钛的硫酸盐中结合水含量减少,溶解率降低,固相物越难溶解。酸解过程最优反应酸质量分数为82%~83%,引发温度为145 ℃。  相似文献   

13.
探究了以磷酸分解磷矿,关键酸解工艺参数对磷及Fe、Al、Mg、Pb、As浸出的影响规律,并从热力学角度进行了分析。结果表明,磷矿内磷及Fe、Al、Mg浸出率随磷酸质量分数、反应温度、反应时间和液固比的增大而增大,搅拌速度影响不明显;Pb浸出率随磷酸质量分数、反应温度和液固比的增大而增大,搅拌速度、反应时间影响不明显;As浸出率随反应温度升高呈先增大后减小趋势,随反应时间增加略有减小,磷酸质量分数、搅拌速度和液固比影响不明显。控制磷酸质量分数为30%(以P2O5计)、反应温度为80 ℃、搅拌速度为300 r/min、反应时间为150 min、液固质量比为10∶1,在此条件下,磷及Fe、Al、Mg、Pb、As的浸出率分别为98.65%、68.56%、48.54%、95.84%、32.85%和84.62%。通过热力学分析表明磷矿内Mg、As浸出率较高,Pb浸出率较低,而Fe、Al浸出率大小主要取决于磷矿中褐铁矿及高岭土含量。  相似文献   

14.
研究以硫铁矿为还原剂,在钛白废酸中湿法还原软锰矿制备硫酸锰的工艺过程。探讨反应温度、反应时间、酸矿比和矿浆浓度等因素对硫酸锰浸出率的影响。实验结果表明:在反应温度为95 ℃、反应时间为2.5 h、硫铁矿与软锰矿(以锰计)的质量比为0.95~1.0、硫酸与软锰矿(以锰计)的质量比为1.30、矿浆质量分数为28%~30%的条件下,硫酸锰的浸出率达到95%以上。通过加入碳酸钙中和浸出溶液使其pH为5~6,以除去溶液中的铁、钛、铝等杂质;加入自制硫化锰以除去溶液中的重金属离子;加入二氟化锰以除去溶液中的钙镁离子等。所得溶液经陈化、过滤、浓缩和结晶后得高纯一水硫酸锰,产品纯度为99%以上。  相似文献   

15.
随着新能源汽车产业快速发展,磷酸铁锂动力电池退役量爆发式增长,回收需求迫切,但面临回收利用经济性较差的难题。正极材料价值较高,本文提出采用磷酸浸出废旧正极材料以制备电池用磷酸铁,但铝等杂质的分离是关键。本文以含铝的磷酸铁锂正极粉为原料,开展了磷酸浸出过程优化及宏观动力学研究,重点研究了酸料比、浸出温度、液固比、搅拌速度等参数对磷酸铁锂及铝浸出效果的影响规律,并考察了磷酸铁锂在磷酸溶液中浸出的宏观动力学。研究结果表明,在酸料比1.1mL/g、温度20℃、液固比(5∶1)mL/g、搅拌速度400r/min、浸出时间120min条件下,磷酸铁锂浸出率大于93%,铝浸出率小于20%;磷酸铁锂正极粉磷酸浸出过程符合无固态产物层的收缩核模型,表观活化能为24.62kJ/mol,浸出过程受扩散控制。  相似文献   

16.
赤泥酸浸回收钛的实验研究   总被引:3,自引:0,他引:3  
对某氧化铝厂的赤泥进行了酸浸回收钛的研究,考察了硫酸浓度、温度、液固比对钛浸出率的影响。结果表明,在硫酸浓度7 mol/L,温度90℃,浸取时间2.5 h,液固比3∶1的条件下,赤泥中钛的浸出率达85%以上。  相似文献   

17.
软锰矿经还原焙烧酸浸提取锰后,渣中二氧化硅质量分数超过60%,而且其他杂质较少,是较好的含硅原料。采用在常压下用氢氧化钠溶液浸出软锰矿酸浸渣中硅的工艺,通过正交实验和单因素实验,考察了反应温度、反应时间、氢氧化钠浓度和液固比等因素对硅浸出率的影响,并对浸出机理进行了探讨。结果表明:影响硅浸出率的主要因素依次为反应温度、液固比、反应时间和氢氧化钠浓度。当反应温度为120 ℃、液固比(溶液体积与软锰矿酸浸渣质量比,mL/g)为2∶1、反应时间为5.5 h、氢氧化钠浓度为20 mol/L时,硅的浸出率达到70.9%。  相似文献   

18.
蒋美雪  孙红娟  彭同江 《化工进展》2019,38(4):2030-2036
硫酸法生产钛白粉副产大量钛石膏,因其含有较多杂质而无法直接利用,目前可采用硫酸酸浸处理提高钛石膏的品质。本文以硫酸为浸取剂,研究钛石膏中铁质氧化物在不同硫酸浓度、反应温度、固液比、反应时间条件下的溶出规律以及酸浸产物的物相变化;采用XRD、XRF、SEM等分析手段,对钛石膏酸浸前后样品的物相、化学成分、形态等进行分析。结果表明,硫酸酸浸可以有效去除钛石膏中铁质氧化物,最佳工艺条件下去除率可达93.14%,白度由原来的8.1提高至54.4。在酸浸过程中随着硫酸浓度、反应温度、固液比等浸取条件的改变,钛石膏中的二水石膏脱水形成半水石膏和无水石膏。采用硫酸酸浸法处理钛石膏,滤液经处理可获得Fe(OH)3,废液可循环利用,将为钛石膏的资源化利用提供新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号