首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Objective: The present study discusses folic acid-etoricoxib-bovine serum albumin nanoparticles (F-ETX-NPs) using folic acid as an over expressed folate receptor ligand for activated macrophages in targeting of rheumatoid arthritis.

Materials and methods: For this purpose etoricoxib-loaded BSA nanoparticles (ETX-NPs) were prepared by desolvation method and activated folic acid conjugation with free amine group of BSA was confirmed by FTIR study and zeta potential measurements.

Results: The F-ETX-NPs showed spherical in shape with 215.8?±?3.2?nm average size?+?7.8?mV zeta potential, 72?±?1.3% etoricoxib entrapment efficiency and showed 93.1?±?2.2% cumulative etoricoxib release upto 72?h. The etoricoxib concentration from F-ETX-NPs was found to be 9.67?±?0.34?µg/g in inflamed joint after 24?h administration revealed remarkably targeting potential to the activated macrophages cells and keep at a high level during the experiment.

Discussion and conclusion: These results suggest that F-ETX-NPs are potentially vector for activated macrophages cells targeting of rheumatoid arthritis.  相似文献   

2.
Objectives: Paclitaxel (PTX) has been indicated for the treatment of a variety of solid tumors, whereas artesunate (ART) has been reported to have the potential for use in combination chemotherapy. In this study, the combination of ART and PTX was prepared in nanoparticle to induce the synergic effect and improve therapeutic efficiency in treatment of breast cancer.

Methods: Dual anticancer agents (PTX and ART) were loaded into Poly-D,L-lactic-co-glycolic acid (PLGA) nanoparticle (NP) by solvent evaporation technique from oil-in-water emulsion, stabilized with Tween 80. Physicochemical properties of obtained nanoparticles (PTX-ART-NPs) were characterized including particle size (Z), polydispersity index (PDI), zeta potentials (ZP), encapsulation efficiency (EE), and in-vitro drug release. Combination index (CI) was calculated to determine the synergic effect of the combination and select the best ratio of ART and PTX. The final NPs analyzed intracellular uptake, cytotoxicity assay, and apoptosis study.

Results: The final NP had a small size (around 120?nm) with a narrow size distribution (PDI <0.3). EE values for each drug were 87.8?±?1.1% and 99.5?±?0.1% for ART and PTX, respectively, and drugs were released from NPs in a controlled release pattern. All combinations of PTX and ART had CI values under 1, which confirmed the synergic effects. Meanwhile, NP preparation increased cytotoxicity on three breast cancer cell-lines comparable to free drugs.

Conclusions: Combination of ART- and PTX-loaded PLGA NP showed promising results for anticancer therapy, especially for breast cancer treatment.  相似文献   

3.
Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18?h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210?±?0.52), followed by kidneys (6.862?±?0.62), intestine (4.862?±?0.45), and lungs (4.640?±?0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251?±?0.09 and 0.386?±?0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5?h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.  相似文献   

4.
Vinblastine (VB), as a chemotherapeutic agent, is widely used in treatment of different types of cancer. However, its clinical application is limited due to its low water solubility, side effects, and multidrug resistance. The aim of this study was to increase the therapeutic efficacy of VB using drug delivery systems. For this purpose, a PEGylated niosomal formulation of vinblastine (Pn-VB) was prepared by thin film hydration method and physicochemically characterized. Drug release pattern was performed by dialysis diffusion method. The cytotoxicity of Pn-VB was investigated against murine lung cancer TC-1 cells using MTT assay and its tumor inhibitory effect was evaluated in lung tumor-bearing C57BL/6 mice. Mean particle size, zeta potential, entrapment, and loading efficiency of niosomes were obtained to be about 234.3?±?11.4?nm, -34.6?±?4.2?mV, 99.92?±?1.6%, and 2.673?±?0.30%, respectively. While, the mean particle size and zeta potential for non-PEGylated niosomes were obtained about 212.4?nm and -31.4?mV, respectively. The in vitro release pattern of drug from niosomes showed a sustained release behavior. Pn-VB indicated a significant increase in toxicity against TC-l cells as compared to free VB. In animal model, Pn-VB exhibited stronger tumor inhibitory effect and longer life time in comparison to free VB. In conclusion, Pn-VB showed appropriate stability, high-entrapment efficacy, lower releasing rate, and stronger cytotoxic activity against lung cancer TC-1 cells as compared to free drug. Thus, the Pn-VB could be a promising formulation for delivery of vinblastine to tumor cells with enhanced drug bioavailability and therapeutic efficacy.  相似文献   

5.
Furanodiene (FN) loaded FA-PEG2000-DSPE modified nanostructured lipid carriers (FA-FN-NLCs) were developed to increase the solubility and bioavailability of FN, prolong the circulation time in blood and improve the targeting ability. FA-FN-NLCs were prepared using emulsification-ultrasonic and low temperature-solidification method and optimized by central composition design (CCD). In vitro and in vivo characteristics of FA-FN-NLCs were investigated in detail. The optimized formulations exhibited a spherical shape with particle size of 127.4?±?2.62?nm, PDI of 0.268?±?0.04, zeta potential of –14.7?±?1.08?mV, high encapsulation efficiency of 89.04?±?2.26% and loading capacity of 8.46?±?0.20%. Differential scanning calorimetry (DSC) indicated that FN was not in crystalline state in FA-FN-NLCs. In vitro drug release exhibited a biphasic release pattern which showed a relative burst drug release at the initial time and followed by a prolonged drug release. In vivo, compared with FN solution (FN-SOL) and FN loaded traditional NLCs (FN-NLCs), FA-FN-NLCs had a longer blood circulating time (t1/2) and higher area under the curve (AUC). NiR fluorescence imaging study demonstrated that FA-FN-NLCs specially accumulated in tumor site by the receptor-mediated endocytosis. This study showed that FA-FN-NLCs was a promising drug delivery system for FN in the treatment of cancer.  相似文献   

6.
In the current study, retinoic acid (RA) was conjugated to Pluronic F127 (PF127) through an esterification process. Mixed micelles were formed with tocopheryl polyethylene glycol 1000 (TPGS) for co-delivery of paclitaxel (PTX) and RA to the cancer cells. Mixed micelles of RA-PF127 and TPGS in different weight ratios (10:0, 7:3, 5:5, 3:7, 0:10 w/w) were prepared and physicochemical properties including, particle size, zeta potential, critical micelle concentration (CMC), drug loading content, entrapment efficiency, drug release, cellular uptake and in vitro cytotoxicity, were investigated in details. Furthermore, the pharmacokinetics of PTX-loaded optimized mixed micelles were evaluated in Sprague-Dawley rats and compared with Stragen® (PTX in Cremophor EL®). Particle sizes and zeta potentials of the drug-loaded micelles were in the range of 102.6–223.5?nm and ?5.3 to ?9.6?mV, respectively. The 7:3 and 5:5 micellar combinations had lower CMC values (0.034–0.042?mg/mL) than 0:10 (0.124?mg/mL). The entrapment efficiencies of 10:0, 7:3, and 5:5 were 53.4?±?9.3%, 61.3?±?0.5%, and 78.7?±?1.66%, respectively. The release rates of PTX from 7:3 and 5:5 mixed micelles were significantly slower than other formulations. Cytotoxicity assay demonstrated increased cytotoxic activity of PTX-loaded mixed micelles compared to free PTX. The Vd and t1/2ß of PTX-loaded RA-PF127/TPGS (7:3) were increased by 2.61- and 1.27-fold, respectively, while the plasma area under the curve (AUC) of the micelles was 2.03-fold lower than those of Stragen®. Therefore, these novel mixed micelles could be effectively used for delivery of PTX and RA to the cancer cells. Moreover, TPGS as part of micelle composition could enhance the therapeutic effect of PTX and reduce side effects.  相似文献   

7.
Background: Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect.

Methods: Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG2 liver cancer cells. Free piperine or piperine-loaded Soluplus®/TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2?mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo.

Results: The diameter of piperine-loaded Soluplus®/TPGS (4:1) mixed micelles was about 61.9?nm and the zeta potential –1.16?±?1.06?mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus®/TPGS. The release results in vitro showed that the piperine-loaded Soluplus®/TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p?Conclusion: The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine-loaded Soluplus®/TPGS mixed micelles are an effective strategy to deliver piperine for cancer therapy.  相似文献   

8.
Background: Free radical scavengers and antioxidants, with the main focus on enhanced targeting to the skin layers, can provide protection against skin ageing.

Objective: The aim of the present study was to prepare nanoethosomal formulation of gammaoryzanol (GO), a water insoluble antioxidant, for its dermal delivery to prevent skin aging.

Methods: Nanoethosomal formulation was prepared by a modified ethanol injection method and characterized by using laser light scattering, scanning electronic microscope (SEM) and X-ray diffraction (XRD) techniques. The effects of formulation parameters on nanoparticle size, encapsulation efficiency percent (EE%) and loading capacity percent (LC%) were investigated. Antioxidant activity of GO-loaded formulation was investigated in vitro using normal African green monkey kidney fibroblast cells (Vero). The effect of control and GO-loaded nanoethosomal formulation on superoxide dismutase (SOD) and malondialdehyde (MDA) content of rat skin was also probed. Furthermore, the effect of GO-loaded nanoethosomes on skin wrinkle improvement was studied by dermoscopic and histological examination on healthy humans and UV-irradiated rats, respectively.

Results: The optimized nanoethosomal formulation showed promising characteristics including narrow size distribution 0.17?±?0.02, mean diameter of 98.9?±?0.05?nm, EE% of 97.12?±?3.62%, LC% of 13.87?±?1.36% and zeta potential value of –15.1?±?0.9?mV. The XRD results confirmed uniform drug dispersion in the nanoethosomes structure. In vitro and in vivo antioxidant studies confirmed the superior antioxidant effect of GO-loaded nanoethosomal formulation compared with control groups (blank nanoethosomes and GO suspension).

Conclusions: Nanoethosomes was a promising carrier for dermal delivery of GO and consequently had superior anti-aging effect.  相似文献   

9.
Objective: The objective of this study (ARS-TPGS-Lipo) was to enhance the stability, encapsulation efficiency (EE), improve AUC, circulation time and liver targeting of ARS-TPGS-Lipo.

Methods: ARS-TPGS-Lipo was prepared by thin-film dispersion method and characterized by TEM. The EE, in vitro release and stability of ARS-TPGS-Lipo were detected by HPLC and UV. In addition to the safety evaluation, the pharmacokinetics and tissue distribution studies were also carried out after i.v. administration.

Results: The size, PDI, zeta potential, and EE of ARS-TPGS-Lipo were 126.7?±?9.9?nm, 0.182?±?0.016, ?10.1?±?1.43?mV, and 78.8?±?1.89%, respectively. ARS-TPGS-Lipo showed the slow-release effect in vitro release experiments. The AUC of ARS in the ARS-TPGS-Lipo group was 7.51 times higher than in the ARS group after i.v. administration and the circulation time was significantly prolonged. The tissue distribution results showed the components of artesunate and its metabolism DHA of the ARS-TPGS-Lipo group were much higher in liver than the ARS-Lipo group.

Conclusion: ARS-TPGS-Lipo was prepared successfully, which had the smaller vesicles size with a better PDI, better stability, higher EE, and slow-release. The results of safety evaluation indicated that ARS-TPGS-Lipo had no hematotoxicity and hepatorenal toxicity. The pharmacokinetic studies indicated ARS-TPGS-Lipo had higher AUC, longer circulation time and better liver targeting.  相似文献   

10.
Context: Docosahexanoic acid (DHA) is an essential omega-3 fatty acid for normal brain development and its use has increased considerably in recent years.

Objective: The aim of this study is to develop and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of DHA for improved palatability, dispersibility and bioavailability.

Methods: The SNEDDS were prepared and evaluated for miscibility, employing different combinations of olive oil and soyabean oil as oil phase, Span 80, Span 20, soya phosphatidylcholine, Labrafil M 1944 CS as surfactants while Tween 80, PEG 400, Cremophor RH40 and propylene glycol as cosurfactants. Thermodynamically stable SNEDDS were characterized for dispersibility, self-emulsification time, droplet size, zeta potential along with sensory analysis. The optimized formulation was subjected to ex vivo and in vivo evaluation such as intestinal permeability, memory performance test, brain concentration and histopathology studies.

Results: The optimized SNEDDS formulation showed emulsification time of 27?±?4.7?s with droplet size of 17.6?±?3.5?nm and zeta potential of??37.6?±?0.5?mV. Intestinal absorption study depicted 18.3%, 21.5%, 41.5%, 98.7% absorption of DHA with SNEDDS-based formulation in comparison to 8.2%, 15.1%, 28.8%, 46.1% absorption of DHA with oil-based marketed formulation after 0.5, 1, 2 and 4?h. DHA concentration in brain homogenate was found to be increased to 2.6-fold in comparison to DHA-marketed formulation. This could be ascribed to enhanced dispersibility and bioavailability of DHA from nanosized formulation.

Conclusion: The developed formulation led to enhanced dispersibility and bioavailability of DHA due to the formation of nanodroplets.  相似文献   

11.
Background: The objective of this work was to optimize the preparation of doxorubicin-loaded albumin nanoparticles (Dox-A-Nps) through desolvation procedures using response surface methodology (RSM). A central composite design (CCD) for four factors at five levels was used in this study.

Method: Albumin nanoparticles were prepared through a desolvation method and were optimized in the aid of CCD. Albumin concentration, amount of doxorubicin, pH values, and percentage of glutaraldehyde were selected as independent variables, particle size, zeta potential, drug loading, encapsulation efficiency, and nanoparticles yield were chosen as response variables. RSM and multiple response optimizations utilizing a quadratic polynomial equation were used to obtain an optimal formulation.

Results: The optimal formulation for Dox-A-Nps was composed of albumin concentration of 17?mg/ml, amount of doxorubicin of 2?mg/ml, pH value is 9 and percentage of glutaraldehyde of 125% of the theoretic amount, under which the optimized conditions gave rise to the actual average value of mean particle size (151?±?0.43?nm), zeta potential (?18.8?±?0.21 mV), drug loading efficiency (21.4?±?0.70%), drug entrapment efficiency (76.9?±?0.21%) and nanoparticles yield (82.0?±?0.34%). The storage stability experiments proved that Dox-A-Nps stable in 4°C over the period of 4 months. The in vitro experiments showed a burst release at the initial stage and followed by a prolonged release of Dox from albumin nanoparticles up to 60?h.

Conclusions: This study showed that the RSM-CCD method could efficiently be applied for the modeling of nanoparticles, which laid the foundation of the further research of immuno nanoparticles.  相似文献   

12.
Abstract

As a major cause for the inefficiency of cancer chemotherapy, multidrug resistance (MDR) has become a major barrier to cancer treatment. Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites and actively target the mitochondria, so that drugs can interfere with mitochondrial function and facilitate cell apoptosis, overcoming MDR. Herein, we report a novel dual-functional paclitaxel (PTX) liposome system possessing both CD44-targeting and mitochondrial-targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Mitochondria-targeting PTX-loaded liposomes were prepared by thin-film hydration and then coated with hyaluronic acid (HA) by electrostatic adsorption. We evaluated the characteristics of the PTX liposomes in vitro, and found that their particle size was about 100?nm and increased to ~140?nm after modification by HA. The entrapment efficiency was larger than 85%, and stability data indicated that the liposomes were physically and chemically stable for at least one week at 4?°C. We further evaluated the intake, mitochondrial targeting, ATP levels, caspase-3 activity measurement, and antitumor actives of the liposomes. The results indicated that HA-coated liposomes with mitochondria targeting had significant inhibitory effects against A549 and A549/Taxol cells, showing them to be a promising means of improving therapeutic efficacy and overcoming MDR in cancer treatment.  相似文献   

13.
Context: Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles.

Objective: The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme.

Materials and methods: Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-?-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity.

Results: The DLS measurement results showed that the particle size of LPNPs ranged from 58.04?±?1.95?nm to 2009.00?±?0.52?nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1?h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120?h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells.

Conclusion: We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.  相似文献   

14.
Aim: To investigate the physicochemical stability, pharmacokinetics (PK), and biodistribution of paclitaxel (PTX) from paclitaxel solid dispersion (PSD) prepared by supercritical antisolvent (SAS) process.

Methods: Physicochemical stability was performed in accelerated (40°C 70?±?5% RH) and stress (60°C) storage conditions for a period of 6 months and 4 weeks, respectively. PK and biodistribution studies were performed in rats following i.v. administration of PTX equivalent to 6 and 12?mg/kg formulations.

Results: Physical stability of PSD showed excellent stability with no recrystallization of the amorphous form. Chemical stability of PSD in terms of % PTX remaining was 98.2?±?0.6% at 6 months and 97.9?±?0.3% at 4 weeks of accelerated and stress conditions, respectively. The PK study showed a nonlinear increase in AUC with increasing dose, that is, 100% increase in dose (from 6 to 12?mg/kg) resulted in 405.90% increase in AUC. Unlike PK study, the organ distribution study of PTX from PSD showed linear relationship with dose escalation. The order of organ distribution of PTX from highest to lowest for both PSD and Taxol® was liver>kidney>lung>brain.

Conclusions: This study demonstrated excellent physicochemical stability with insight information on the PK and biodistribution of PTX from PSD prepared by SAS process.  相似文献   

15.
Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250?±?28?nm), higher zeta potential (+58?±?8?mV), and high entrapment efficiency (86?±?5.6%) and loading capacity (34?±?7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.  相似文献   

16.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

17.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

18.
Abstract

Objectives: The aim of the study was to deliver effective doses of quercetin (Que) to the lower region of hair follicles (HFs) using the transfollicular route through dipalmotylphosphatidylcholine (DPPC)-reinforced poly lactide-co- glycolide nanoparticles (DPPC-PLGA hybrid NPs) for the treatment of alopecia.

Method: PLGA and DPPC-PLGA hybrid NPs were prepared by double-emulsification solvent evaporation method. NPs were characterized for size, shape, zeta potential entrapment and drug release. Drug-polymer interactions were determined by infrared spectroscopy (Fourier transform infrared spectroscopy, FTIR) and differential scanning calorimetry (DSC). Follicular uptake of fluorescent marker tagged NPs was assessed on isolated rat skin by fluorescent microscopy. Potential of hybrid NPs to induce hair regrowth was tested on testosterone-induced alopecia in rat models by visual inspection, hair follicular density measurement (no./mm), and histological skin tissue section studies.

Key findings: Hybrid NPs had mean vesicles size 339?±?1.6, zeta potential –32.6?±?0.51, and entrapment efficiency 78?±?5.5. Cumulative drug release after 12?h was found to be 47.27?±?0.79%. FTIR and DSC confirmed that drug was independently dispersed in the amorphous form in the polymer. Data from fluorescence microscopy suggested that NPs were actively taken up by HFs. In-vivo studies on alopecia-induced rat models showed that hybrid NPs improved hair regrowth potential of Que and accumulation of NPs at HFs end region inhibit HFs cells apoptosis.

Conclusion: This study concludes that phospholipid–polymer hybrid NPs could be the promising transfollicular delivery system for Que in the treatment of androgenic alopecia management.  相似文献   

19.
Abstract

Objective: Nisoldipine (ND) is a potential antihypertensive drug with low oral bioavailability. The aim was to develop an optimal formulation of ND-loaded solid lipid nanoparticles (ND-SLNs) for improved oral bioavailability and pharmacodynamic effect by using a two-factor, three-level central composite design. Glyceryl trimyristate (Dynasan 114) and egg lecithin were selected as independent variables. Particle size (Y1), PDI (Y2) and entrapment efficiency (EE) (Y3) of SLNs were selected as dependent response variables.

Methods: The ND-SLNs were prepared by hot homogenization followed by ultrasonication. The size, PDI, zeta potential, EE, assay, in vitro release and morphology of ND-SLNs were characterized. Further, the pharmacokinetic (PK) and pharmacodynamic behavior of ND-SLNs was evaluated in male Wistar rats.

Results: The optimal ND-SLN formulation had particle size of 104.4?±?2.13?nm, PDI of 0.241?±?0.02 and EE of 89.84?±?0.52%. The differential scanning calorimetry and X-ray diffraction analyses indicated that the drug incorporated into ND-SLNs was in amorphous form. The morphology of ND-SLNs was found to be nearly spherical by scanning electron microscopy. The optimized formulation was stable at refrigerated and room temperature for 3 months. PK studies showed that 2.17-fold increase in oral bioavailability when compared with a drug suspension. In pharmacodynamic studies, a significant reduction in the systolic blood pressure was observed, which sustained for a period of 36?h when compared with a controlled suspension.

Conclusion: Taken together, the results conclusively demonstrated that the developed optimal ND-SLNs caused significant enhancement in oral bioavailability along with pharmacodynamic effect.  相似文献   

20.
The aim of this study was to develop chitosan derivative polymeric micelles for co-delivery of paclitaxel (PTX) and α-tocopherol succinate (α-TS) to the cancer cells to improve the therapeutic efficiency and reduce side effects of PTX. In this study, amphiphilic tocopheryl succinate-grafted chitosan oligosaccharide was synthesized and physically loaded by PTX and α-TS with entrapment efficiency of 67.9% and 73.2%, respectively. Physical incorporation of α-TS into the micelles increased the hydrophobic interaction between PTX and the micelles core, which improved micelle stability, reduced the micelle size and also sustained the PTX release from the micelles. The mean particle size and zeta potential of αTS/PTX-loaded micelles were about 133?nm and +25.2?mV, respectively, and PTX release was completed during 6–9?d from the micelles. Furthermore, the cytotoxicity of α-TS/PTX-loaded micelles against human ovarian cancer cell line cancer cell in vitro was higher than that of PTX-loaded micelles and the free drug solution. Half maximal inhibitory concentration values of PTX after 48-h exposure of the cells to the PTX-loaded micelles modified and unmodified with α-TS were 110 and 188?ng/ml, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号