首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18?h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210?±?0.52), followed by kidneys (6.862?±?0.62), intestine (4.862?±?0.45), and lungs (4.640?±?0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251?±?0.09 and 0.386?±?0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5?h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.  相似文献   

2.
Objective: The present study discusses paclitaxel (PTX)-loaded mannosylated-DSPE (Distearoyl-phosphatidyl-ethanolamine) solid lipid nanoparticles (M-SLNs) using mannose as a lectin receptor ligand conjugate for lung cancer targeting and to increase the anticancer activity of PTX against A549 lung’s epithelial cancer cells.

Materials and methods: The PTX-SLNs were prepared by solvent injection method and mannose was conjugated to the free amine group of stearylamine. The M-SLNs obtained were characterized for their particle size, polydispersity index, zeta potential and morphology by transmission electron microscope.

Results: The M-SLNs were spherical in shape with 254?±?2.3?nm average size, positive zeta potential (3.27?mV), 79.4?±?1.6 drug entrapment efficiency and showed the lower extent of drug release 40% over 48?h in vitro. Cytotoxicity study on A549 cell lines and biodistrubtion study of drug revealed that M-SLNs deliver a higher concentration of PTX as compared to PTX-SLNs in an alveolar cell site.

Discussion and conclusion: These results suggested that mannosylated M-SLNs are safe and potential vector for lung cancer targeting.  相似文献   

3.
Background: The objective of this work was to optimize the preparation of doxorubicin-loaded albumin nanoparticles (Dox-A-Nps) through desolvation procedures using response surface methodology (RSM). A central composite design (CCD) for four factors at five levels was used in this study.

Method: Albumin nanoparticles were prepared through a desolvation method and were optimized in the aid of CCD. Albumin concentration, amount of doxorubicin, pH values, and percentage of glutaraldehyde were selected as independent variables, particle size, zeta potential, drug loading, encapsulation efficiency, and nanoparticles yield were chosen as response variables. RSM and multiple response optimizations utilizing a quadratic polynomial equation were used to obtain an optimal formulation.

Results: The optimal formulation for Dox-A-Nps was composed of albumin concentration of 17?mg/ml, amount of doxorubicin of 2?mg/ml, pH value is 9 and percentage of glutaraldehyde of 125% of the theoretic amount, under which the optimized conditions gave rise to the actual average value of mean particle size (151?±?0.43?nm), zeta potential (?18.8?±?0.21 mV), drug loading efficiency (21.4?±?0.70%), drug entrapment efficiency (76.9?±?0.21%) and nanoparticles yield (82.0?±?0.34%). The storage stability experiments proved that Dox-A-Nps stable in 4°C over the period of 4 months. The in vitro experiments showed a burst release at the initial stage and followed by a prolonged release of Dox from albumin nanoparticles up to 60?h.

Conclusions: This study showed that the RSM-CCD method could efficiently be applied for the modeling of nanoparticles, which laid the foundation of the further research of immuno nanoparticles.  相似文献   

4.
Purpose: A novel brain targeting drug delivery system based on OX26 antibody conjugation on PEGylated cationic solid lipid nanoparticles (OX26-PEG-CSLN) was prepared.

Methods: The Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody (OX26-PEG-CSLN) were prepared by emulsion evaporation–solidification at low temperature method. The immune-gold labeled OX26-PEG-CSLN was visualized by transmission electron microscopy. The mean diameter and zeta potential of OX26-PEG-CSLN, PEG-CSLN and CSLN were determined using a Zetasizer. The entrapment efficiency of OX26-PEG-CSLN, PEG-CSLN and CSLN was determined by ultrafiltration centrifugation method. And the solid-state characterization of OX26-PEG-CSLN and CSLN were analyzed by X-ray. Pharmacokinetics studies were conducted by in vivo microdialysis in rat cerebrospinal fluid.

Results: The results showed that the OX26-PEG-CSLN, PEG-CSLN and CSLN had average diameters of 47.68?±?1.65, 27.20?±?1.70 and 33.89?±?5.74?nm, Zeta potentials of ?0.533?±?0.115?mV, 11.200?±?0.500?mV and 11.080?±?1.170?mV and entrapment efficiencies of 83.03?±?0.01%, 92.90?±?3.50% and 97.83?±?0.19%, respectively. In the pharmacokinetics studies, the AUC value of OX26-PEG-CSLN was11.08-fold higher than that of the Baicalin solution (SOL) (p?p?>?0.05); the Cmax value of OX26-PEG-CSLN was 7.88-fold higher than that of SOL (p?p?Conclusion: These results demonstrated OX26-PEG-CSLN could be a promising carrier to deliver drugs across the BBB for the treatment of brain diseases.  相似文献   

5.
The aim of this study was to design hirudin-loaded bovine serum albumin (BSA) nanoparticles to control release and improve antithrombotic effect of hirudin. BSA nanoparticles were designed as carriers for delivery of hirudin. Hirudin–BSA nanoparticles were prepared by a desolvation procedure and cross linked on the wall material of BSA. The hirudin–BSA nanoparticles were characterised by particle size distribution, zeta potential, entrapment efficiency, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). The in vitro release characteristics and pharmacological availability were investigated. The morphology of hirudin–BSA nanoparticles was approximately spherical. The mean particle size was 164.1 ± 5.40 nm and the zeta potential was ?20.41 ± 0.64 mV. The mean entrapment efficiency and drug loading were 85.14% ± 4.79% and 66.38% ± 3.54%, respectively. Results from DSC and PXRD revealed that hirudin in BSA existed in an amorphous state. The release behaviours of hirudin from BSA nanoparticles in phosphate buffer solution were fitted to the bioexponential model. The in vivo result obtained after intravenous injection of hirudin–BSA nanoparticles in normal rats demonstrated that BSA nanoparticles could prolong the antithrombotic effect of hirudin in comparison with hirudin solution. These results suggest that hirudin–BSA nanoparticles may be a promising drug delivery system for thrombosis and disseminated intravascular coagulation therapy.  相似文献   

6.
Objective: The aim of the present study was to assess the in vitro antimicrobial activities of nanoliposomal formulations loaded with vancomycin or/and rifampin against the biofilm formed by Staphylococcus epidermidis at 37?°C under aerobic condition.

Materials and methods: Liposomal formulations were prepared by dehydration-rehydration (DRV) method and characterized for size, zeta potential and encapsulation efficacy. The ability of different formulations on eradication of bacterial biofilm was assessed through optical density ratio (ODr) and the results implicate higher survival rates of S. epidermidis on biofilm. Positive control was defined as an ODr?=?1.0.

Results: The zeta potential of anionic, cationic and PEGylated liposomes was ?35?±?2, 35?±?1 and 27?±?2?mV whereas the mean sizes of these liposomal formulations were 145?±?4, 134?±?1 and 142?±?6?nm, respectively. Encapsulation efficacy of rifampin and vancomycin was more than 60% and about 25%, respectively. Cationic liposomal rifampin lowered the ODr to 0.61 and was the most effective formulations against S. epidermidis biofilm (p?Conclusion: The results of this study showed that rifampin-loaded liposomes were effective against bacterial biofilm.  相似文献   

7.
Objective: The objective of this study (ARS-TPGS-Lipo) was to enhance the stability, encapsulation efficiency (EE), improve AUC, circulation time and liver targeting of ARS-TPGS-Lipo.

Methods: ARS-TPGS-Lipo was prepared by thin-film dispersion method and characterized by TEM. The EE, in vitro release and stability of ARS-TPGS-Lipo were detected by HPLC and UV. In addition to the safety evaluation, the pharmacokinetics and tissue distribution studies were also carried out after i.v. administration.

Results: The size, PDI, zeta potential, and EE of ARS-TPGS-Lipo were 126.7?±?9.9?nm, 0.182?±?0.016, ?10.1?±?1.43?mV, and 78.8?±?1.89%, respectively. ARS-TPGS-Lipo showed the slow-release effect in vitro release experiments. The AUC of ARS in the ARS-TPGS-Lipo group was 7.51 times higher than in the ARS group after i.v. administration and the circulation time was significantly prolonged. The tissue distribution results showed the components of artesunate and its metabolism DHA of the ARS-TPGS-Lipo group were much higher in liver than the ARS-Lipo group.

Conclusion: ARS-TPGS-Lipo was prepared successfully, which had the smaller vesicles size with a better PDI, better stability, higher EE, and slow-release. The results of safety evaluation indicated that ARS-TPGS-Lipo had no hematotoxicity and hepatorenal toxicity. The pharmacokinetic studies indicated ARS-TPGS-Lipo had higher AUC, longer circulation time and better liver targeting.  相似文献   

8.
Abstract

Objective: Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer’s disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined.

Methods: Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25?°C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1?h after administration using fluorescence microscopy and software-aided image processing.

Results: Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190?nm, and a zeta potential of +40.4 and +31.6?mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07%?±?6.67 after 72?h), improved formulation stability at 4?°C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p?>?0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices.

Conclusion: Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully delivered to different brain regions shortly after intranasal administration suggesting their potential as a delivery system for Alzheimer’s disease management.  相似文献   

9.
Abstract

Objectives: The aim of the study was to deliver effective doses of quercetin (Que) to the lower region of hair follicles (HFs) using the transfollicular route through dipalmotylphosphatidylcholine (DPPC)-reinforced poly lactide-co- glycolide nanoparticles (DPPC-PLGA hybrid NPs) for the treatment of alopecia.

Method: PLGA and DPPC-PLGA hybrid NPs were prepared by double-emulsification solvent evaporation method. NPs were characterized for size, shape, zeta potential entrapment and drug release. Drug-polymer interactions were determined by infrared spectroscopy (Fourier transform infrared spectroscopy, FTIR) and differential scanning calorimetry (DSC). Follicular uptake of fluorescent marker tagged NPs was assessed on isolated rat skin by fluorescent microscopy. Potential of hybrid NPs to induce hair regrowth was tested on testosterone-induced alopecia in rat models by visual inspection, hair follicular density measurement (no./mm), and histological skin tissue section studies.

Key findings: Hybrid NPs had mean vesicles size 339?±?1.6, zeta potential –32.6?±?0.51, and entrapment efficiency 78?±?5.5. Cumulative drug release after 12?h was found to be 47.27?±?0.79%. FTIR and DSC confirmed that drug was independently dispersed in the amorphous form in the polymer. Data from fluorescence microscopy suggested that NPs were actively taken up by HFs. In-vivo studies on alopecia-induced rat models showed that hybrid NPs improved hair regrowth potential of Que and accumulation of NPs at HFs end region inhibit HFs cells apoptosis.

Conclusion: This study concludes that phospholipid–polymer hybrid NPs could be the promising transfollicular delivery system for Que in the treatment of androgenic alopecia management.  相似文献   

10.
In this study, tetrandrine-loaded cationic solid lipid nanoparticles (TET-CNP) and solid lipid nanoparticles (TET-NP) were prepared by the emulsion evaporation-solidification at low temperature method. The particle size, zeta potential, and entrapment efficiency of TET-CNP and TET-NP were characterized. The results showed that the TET-CNP and TET-NP had average diameters of (15.29?±?1.34) nm and (18.77?±?1.23) nm with zeta potentials of (5.11?±?1.03) mV and (?8.71?±??1.23) mV and entrapment efficiencies of (94.1?±?2.37)% and (95.6?±?2.43)%, respectively. In vitro release studies indicated that the TET-CNP and TET-NP retained the drug entity better than tetrandrine ophthalmic solutions (TET-SOL). In the pharmacokinetics studies, the AUC values of TET-CNP and TET-NP were 1.96-fold and 2.00-fold higher than that of TET-SOL (?p?Cmax values of TET-CNP and TET-NP were 2.45-fold and 2.53-fold higher than that of the TET-SOL (p?相似文献   

11.
Objective: The conventional liposomal amphotericin B causes many unwanted side effects like blood disorder, nephrotoxicity, dose-dependent side effects, highly variable oral absorption and formulation-related instability. The objective of the present investigation was to develop cost-effective nanoemulsion as nanocarreir for enhanced and sustained delivery of amphotericin B into the skin.

Methods and characterizations: Different oil-in-water nanoemulsions were developed by varying the composition of hydrophilic (Tween® 80) surfactants and co-surfactant by the spontaneous titration method. The developed formulation were characterized, optimized, evaluated and compared for the skin permeation with commercial formulation (fungisome 0.01% w/w). Optimized formulations loaded with amphotericin B were screened using varied concentrations of surfactants and co-surfactants as decided by the ternary phase diagram.

Results and discussion: The maximum % transmittance obtained were 96.9?±?1.0%, 95.9?±?3.0% and 93.7?±?1.2% for the optimized formulations F-I, F-III and F-VI, respectively. These optimized nanoemulsions were subjected to thermodynamic stability study to get the most stable nanoemulsions (F-I). The results of the particle size and zeta potential value were found to be 67.32?±?0.8 nm and –3.7?±?1.2?mV for the final optimized nanoemulsion F-I supporting transparency and stable nanoemulsion for better skin permeation. The steady state transdermal flux for the formulations was observed between 5.89?±?2.06 and 18.02?±?4.3?µg/cm2/h whereas the maximum enhancement ratio were found 1.85- and 3.0-fold higher than fungisome and drug solution, respectively, for F-I. The results of the skin deposition study suggests that 231.37?±?3.6?µg/cm2 drug deposited from optimized nanoemulsion F-I and 2.11-fold higher enhancement ratio as compared to fungisome. Optimized surfactants and co-surfactant combination-mediated transport of the drug through the skin was also tried and the results were shown to have facilitated drug permeation and skin perturbation (SEM).

Conclusion: The combined results suggested that amphotericin B nanoemulsion could be a better option for localized topical drug delivery and have greater potential as an effective, efficient and safe approach.  相似文献   

12.
Background: Free radical scavengers and antioxidants, with the main focus on enhanced targeting to the skin layers, can provide protection against skin ageing.

Objective: The aim of the present study was to prepare nanoethosomal formulation of gammaoryzanol (GO), a water insoluble antioxidant, for its dermal delivery to prevent skin aging.

Methods: Nanoethosomal formulation was prepared by a modified ethanol injection method and characterized by using laser light scattering, scanning electronic microscope (SEM) and X-ray diffraction (XRD) techniques. The effects of formulation parameters on nanoparticle size, encapsulation efficiency percent (EE%) and loading capacity percent (LC%) were investigated. Antioxidant activity of GO-loaded formulation was investigated in vitro using normal African green monkey kidney fibroblast cells (Vero). The effect of control and GO-loaded nanoethosomal formulation on superoxide dismutase (SOD) and malondialdehyde (MDA) content of rat skin was also probed. Furthermore, the effect of GO-loaded nanoethosomes on skin wrinkle improvement was studied by dermoscopic and histological examination on healthy humans and UV-irradiated rats, respectively.

Results: The optimized nanoethosomal formulation showed promising characteristics including narrow size distribution 0.17?±?0.02, mean diameter of 98.9?±?0.05?nm, EE% of 97.12?±?3.62%, LC% of 13.87?±?1.36% and zeta potential value of –15.1?±?0.9?mV. The XRD results confirmed uniform drug dispersion in the nanoethosomes structure. In vitro and in vivo antioxidant studies confirmed the superior antioxidant effect of GO-loaded nanoethosomal formulation compared with control groups (blank nanoethosomes and GO suspension).

Conclusions: Nanoethosomes was a promising carrier for dermal delivery of GO and consequently had superior anti-aging effect.  相似文献   

13.
The present work aimed to develop and characterize sustained release cuboidal lipid polymeric nanoparticles (LPN) of rosuvastatin calcium (ROS) by solvent emulsification-evaporation process. A three factor, two level (23) full-factorial design was applied to study the effect of independent variables, i.e. amount of lipid, surfactant and polymer on dependent variables, i.e. percent entrapment efficiency and particle size. Optimized formulations were further studied for zeta potential, TEM, in vitro drug release and ex vivo intestinal permeability. Cuboidal nanoparticles exhibited average particle size 61.37?±?3.95?nm, entrapment efficiency 86.77?±?1.27% and zeta potential ?6.72?±?3.25?mV. Nanoparticles were lyophilized to improve physical stability and obtain free-flowing powder. Effect of type and concentration of cryoprotectant required to lyophilize nanoparticles was optimized using freeze-thaw cycles. Mannitol as cryoprotectant in concentration of 5-8% w/v was found to be optimal providing zeta potential ?20.4?±?4.63?mV. Lyophilized nanoparticles were characterized using FTIR, DSC, XRD and SEM. Absence of C=C and C–F aromatic stretch at 1548 and 1197?cm?1, respectively, in LPN indicated coating of drug by lipid and polymer. In vitro diffusion of ROS using dialysis bag showed pH-independent sustained release of ROS from LPN in comparison to drug suspension. Intestinal permeability by non-everted gut sac model showed prolonged release of ROS from LPN owing to adhesion of polymer to mucus layer. In vivo absorption of ROS from LPN resulted in 3.95-fold increase in AUC0–last and 7.87-fold increase in mean residence time compared to drug suspension. Furthermore modified tyloxapol-induced rat model demonstrated the potential of ROS-loaded LPN in reducing elevated lipid profile.  相似文献   

14.
Context: Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles.

Objective: The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme.

Materials and methods: Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-?-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity.

Results: The DLS measurement results showed that the particle size of LPNPs ranged from 58.04?±?1.95?nm to 2009.00?±?0.52?nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1?h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120?h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells.

Conclusion: We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.  相似文献   

15.
Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250?±?28?nm), higher zeta potential (+58?±?8?mV), and high entrapment efficiency (86?±?5.6%) and loading capacity (34?±?7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.  相似文献   

16.
The aim of this investigation is the management of rheumatoid arthritis (RA) by developing methotrexate-loaded calcium phosphate nanoparticles (MTX-CAP-NP) and to evaluate pharmacokinetic and pharmacodynamic behavior in adjuvant induced arthritis model. The nanoparticles were synthesized by wet precipitation method and optimized by Box-Behnken experimental design. MTX-CAP-NPs were characterized by TEM, FTIR, DSC and XRD studies. The particle size, zeta potential and entrapment efficiency of the optimized nanoparticles were found to be 204.90?±?64?nm, ?11.58?±?4.80?mV, and 88.33?±?3.74%, respectively. TEM, FTIR, DSC and XRD studies revealed that the developed nanoparticles were nearly spherical in shape and the crystalline structure of CAP-NP was not changed after MTX loading. The pharmacokinetic studies revealed that MTX-CAP-NP enhanced bioavailability of MTX by 2.6-fold when compared to marketed formulation (FOLITRAX-10). Under pharmacodynamic evaluation, arthritic assessment, radiography and histopathology studies revealed that CAP has ability to regenerate cartilage and bone therefore, together with MTX, MTX-CAP-NPs have shown significant reduction in disease progression. The overall work demonstrated that the developed nanodelivery system was well tolerated and more effective than the marketed formulation.  相似文献   

17.
Objective: The purpose of this research study was to develop, optimize, and characterize dasatinib loaded polyethylene glycol (PEG) stabilized chitosan capped gold nanoparticles (DSB-PEG-Ch-GNPs).

Methods: Gold (III) chloride hydrate was reduced with chitosan and the resulting nanoparticles were coated with thiol-terminated PEG and loaded with dasatinib (DSB). Plackett–Burman design (PBD) followed by Box–Behnken experimental design (BBD) were employed to optimize the process parameters. Polynomial equations, contour, and 3D response surface plots were generated to relate the factors and responses. The optimized DSB-PEG-Ch-GNPs were characterized by FTIR, XRD, HR-SEM, EDX, TEM, SAED, AFM, DLS, and ZP.

Results: The results of the optimized DSB-PEG-Ch-GNPs showed particle size (PS) of 24.39?±?1.82?nm, apparent drug content (ADC) of 72.06?±?0.86%, and zeta potential (ZP) of ?13.91?±?1.21?mV. The responses observed and the predicted values of the optimized process were found to be close. The shape and surface morphology studies showed that the resulting DSB-PEG-Ch-GNPs were spherical and smooth. The stability and in vitro drug release studies confirmed that the optimized formulation was stable at different conditions of storage and exhibited a sustained drug release of the drug of up to 76% in 48?h and followed Korsmeyer–Peppas release kinetic model.

Conclusions: A process for preparing gold nanoparticles using chitosan, anchoring PEG to the particle surface, and entrapping dasatinib in the chitosan-PEG surface corona was optimized.  相似文献   

18.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

19.
Purpose: To develop and optimize nanoemulsion (NE)-based emulgel (EG) formulation as a potential vehicle for topical delivery of tea tree oil (TTO).

Methodology: Central composite design was adopted for optimizing the processing conditions for NE preparation by high energy emulsification method viz. surfactant concentration, co-surfactant concentration, and stirring speed. The optimized NE was developed into emulgel (EG) using pH sensitive polymer Carbopol 940 and triethanolamine as alkalizer. The prepared EG was evaluated for its pH, viscosity, and texture parameters, ex vivo permeation at 37?°C and stability. Antimicrobial evaluation of EG in comparison to conventional gel and pure TTO was also carried out against selected microbial strains.

Results and discussion: Optimized NE had particle size and zeta potential of 16.23?±?0.411?nm and 36.11?±?1.234?mV, respectively. TEM analysis revealed the spherical shape of droplets. The pH of EG (5.57?±?0.05?) was found to be in accordance with the range of human skin pH. EG also illustrated efficient permeation (79.58?μL/cm2) and flux value (JSS) of 7.96?μL cm2/h through skin in 10?h. Viscosity and texture parameters, firmness (9.3?±?0.08?g), spreadability (2.26?±?0.06?mJ), extrudability (61.6?±?0.05?mJ), and adhesiveness (8.66?±?0.08?g) depict its suitability for topical application. Antimicrobial evaluation of EG with same amount of TTO as conventional gel revealed broader zones of growth inhibitions against all the selected microbial strains. Moreover, EG was also found to be nonirritant (PII 0.0833). These parameters were consistent over 90 d.

Conclusion: TTO EG turned out to be a promising vehicle for the topical delivery of TTO with enhanced therapeutic efficacy.  相似文献   

20.
Objective: This study aimed to evaluate kinetic solubility advantage of amorphous etoricoxib solid dispersions prepared with three water soluble polymers and correlate it with solid state and supersaturated drug solution stabilization potential of these polymers.

Methods: Amorphous solid dispersions (ASDs) of etoricoxib were prepared with polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and hydroxyethyl cellulose (HEC) at 70:30w/w ratio and characterized for glass transition temperature (Tg), miscibility and intermolecular interactions. Kinetic solubility profiles of amorphous etoricoxib and its ASDs were determined in water at 37 °C. Solid-state stability was assessed by enthalpy relaxation studies at a common degree of undercooling of around 19.0 °C at 0% RH. Recrystallization behavior of supersaturated drug solution was evaluated in the absence and presence of pre-dissolved polymer at 37 °C.

Results: Amorphous etoricoxib exhibited rapid solid-to-solid transition to yield a solubility advantage of merely 1.5-fold in water. Among the ASDs, etoricoxib-PVP dispersion exhibited maximal “peak” (2-fold) and “plateau” (1.8-fold) solubility enhancement, while etoricoxib-PVA dispersion could only sustain the “peak” solubility achieved by amorphous etoricoxib. In contrast, etoricoxib-HEC dispersion displayed no solubility advantage. The rank order for solid state and supersaturated solution stabilization followed a similar trend of amorphous etoricoxib?Conclusion: Dissolution behavior of ASDs is influenced by concomitantly occurring solid phase changes, thus understanding these processes independently can enable assessment of the predominant route of drug crystallization and stabilization by the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号