首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this paper was to identify oral bioavailability enhancing approaches for a poorly water-soluble research compound during drug discovery stages using minimal amounts of material. LCQ789 is a pBCS (preclinical BCS) Class II compound with extremely low aqueous solubility (<1 μg/mL) and high permeability, therefore, resulting in very low oral bioavailability in preclinical species (rats and dogs). A number of solubility and/or dissolution enhancing approaches including particle size reduction, solid dispersions, lipid-based formulations and co-crystals, were considered in order to improve the compound's oral bioavailability. High-Throughput Screening (HTS) and in silico modeling (GastroPlus?) were utilized to minimize the compound consumption in early discovery stages. In vivo evaluation of selected physical form and formulation strategies was performed in rats and dogs. Amongst the formulation strategies, optimized solid dispersion and lipid-based formulation provided significant improvement in drug dissolution rate and hence, oral bioavailability. In addition, a significant impact of physical form on oral bioavailability of LCQ789 was observed. In conclusion, a thorough understanding of not only the formulation technique but also the physical form of research compounds is critical to ensure physical stability, successful pharmacokinetic (PK) profiling and early developability risk assessment.  相似文献   

2.
The objective of this study was to develop a tablet formulation of ketoconazole incorporating drug nanoparticles to enhance saturation solubility and dissolution velocity for enhancing bioavailability and reducing variability in systemic exposure. The bioavailability of ketoconazole is dissolution limited following oral administration. To enhance bioavailability and overcome variability in systemic exposure, a nanoparticle formulation of ketoconazole was developed. Ketoconazole nanoparticles were prepared using a media-milling technique. The nanosuspension was layered onto water-soluble carriers using a fluid bed processor. The nanosuspensions were characterized for particle size before and after layering onto water-soluble carriers. The saturation solubility and dissolution characteristics were investigated and compared with commercial ketoconazole formulation to ascertain the impact of particle size on drug dissolution. The drug nanoparticles were evaluated for solid-state transitions before and after milling using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). This study demonstrated that tablet formulation incorporating ketoconazole nanoparticles showed significantly faster rate of drug dissolution in a discriminating dissolution medium as compared with commercially available tablet formulation. There was no affect on solid-state properties of ketoconazole following milling. The manufacturing process used is relatively simple and scalable indicating general applicability to enhance dissolution and bioavailability of many sparingly soluble compounds.  相似文献   

3.
The objective of this study was to develop a tablet formulation of ketoconazole incorporating drug nanoparticles to enhance saturation solubility and dissolution velocity for enhancing bioavailability and reducing variability in systemic exposure. The bioavailability of ketoconazole is dissolution limited following oral administration. To enhance bioavailability and overcome variability in systemic exposure, a nanoparticle formulation of ketoconazole was developed. Ketoconazole nanoparticles were prepared using a media-milling technique. The nanosuspension was layered onto water-soluble carriers using a fluid bed processor. The nanosuspensions were characterized for particle size before and after layering onto water-soluble carriers. The saturation solubility and dissolution characteristics were investigated and compared with commercial ketoconazole formulation to ascertain the impact of particle size on drug dissolution. The drug nanoparticles were evaluated for solid-state transitions before and after milling using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). This study demonstrated that tablet formulation incorporating ketoconazole nanoparticles showed significantly faster rate of drug dissolution in a discriminating dissolution medium as compared with commercially available tablet formulation. There was no affect on solid-state properties of ketoconazole following milling. The manufacturing process used is relatively simple and scalable indicating general applicability to enhance dissolution and bioavailability of many sparingly soluble compounds.  相似文献   

4.
Olmesartan medoxomil (OM) is a hydrophobic antihypertensive drug with low bioavailability (26%) and is known to have adverse effects such as celiac disease and enteropathy. The purpose of this study was to develop SMEDDS to increase bioavailability and decrease potential side effects of OM. Hydrophilic lipophilic balance was calculated by testing solubility of OM in different oils, surfactants, and cosurfactants to obtain the most suitable combination of SMEDDS. Pseudoternary phase diagram was used to select the better oil/water formulation of SMEDDS. After a test for 3-month stability, dissolution tests and parallel artificial membrane permeability assay (PAMPA) were conducted to investigate drug solubility and permeability. Biodistribution of fluorescent marked SMEDDS was observed by using in vivo imaging system. The pharmacodynamics of the drug were determined by measuring blood pressure from tails of rats. At the end of the experiment, intestines were examined for adverse effects of OM. Compared with tablet formulation according to the dissolution study, SMEDDS formulation showed 1.67 times improvement in solubility of OM. PAMPA studies suggested a much faster permeability rate for OM SMEDDS compared to the suspension form. Labeled SMEDDS gave 3.96 times stronger fluorescent emission than control dye administered mice in in vivo imaging system (IVIS®) studies, indicating an increased bioavailability. Treating effect of SMEDDS was 3.1 times more efficient compared to suspension in hypertensive rats. It caused neither celiac-like enteropathy nor diarrhea, during 21-day noninvasive blood pressure system (NIBP) assay. Our results suggest that SMEEDS formulation improves dissolution and oral bioavailability of OM while reducing its adverse effects.  相似文献   

5.
The rapidly increasing availability of drug receptor structural characteristics has permitted the receptor-guided synthesis of potential new drug molecules. This synthesis strategy frequently results in the creation of polycyclic and highly hydrophobic compounds, with attendant poor oral bioavailability resulting from low solubility and slow dissolution rate in the primarily aqueous contents of the gastrointestinal (GI) tract. In an attempt to improve the solubility-limited bioavailability associated with these compounds, formulators have turned to the use of lipid excipients in which the compounds can be solubilized prior to oral administration. This new class of excipients presents the pharmaceutical scientist with a number of new challenges at all stages of the formulation development process, beginning with the excipient selection and stability assessment of the prototype formulation, up to and including scale-up and mass production of the final market-image product. The interaction of lipid-based formulations with the gastrointestinal system and associated digestive processes presents additional challenges and opportunities that will be understood more fully as we begin to unravel the intricacies of the GI processing of lipid excipients. For example, an increasing body of evidence has shown that certain lipids are capable of inhibiting both presystemic drug metabolism and drug efflux by the gut wall mediated by p-glycoprotein (PGP). And, it is well known that lipids are capable of enhancing lymphatic transport of hydrophobic drugs, thereby reducing drug clearance resulting from hepatic first-pass metabolism. This review addresses the current state of knowledge regarding oral lipid-based formulation development and scale-up issues and the physiological and biopharmaceutical aspects pertinent to the development of an orally bioavailable and efficacious dosage form.  相似文献   

6.
The rapidly increasing availability of drug receptor structural characteristics has permitted the receptor-guided synthesis of potential new drug molecules. This synthesis strategy frequently results in the creation of polycyclic and highly hydrophobic compounds, with attendant poor oral bioavailability resulting from low solubility and slow dissolution rate in the primarily aqueous contents of the gastrointestinal (GI) tract. In an attempt to improve the solubility-limited bioavailability associated with these compounds, formulators have turned to the use of lipid excipients in which the compounds can be solubilized prior to oral administration. This new class of excipients presents the pharmaceutical scientist with a number of new challenges at all stages of the formulation development process, beginning with the excipient selection and stability assessment of the prototype formulation, up to and including scale-up and mass production of the final market-image product. The interaction of lipid-based formulations with the gastrointestinal system and associated digestive processes presents additional challenges and opportunities that will be understood more fully as we begin to unravel the intricacies of the GI processing of lipid excipients. For example, an increasing body of evidence has shown that certain lipids are capable of inhibiting both presystemic drug metabolism and drug efflux by the gut wall mediated by p-glycoprotein (PGP). And, it is well known that lipids are capable of enhancing lymphatic transport of hydrophobic drugs, thereby reducing drug clearance resulting from hepatic first-pass metabolism. This review addresses the current state of knowledge regarding oral lipid-based formulation development and scale-up issues and the physiological and biopharmaceutical aspects pertinent to the development of an orally bioavailable and efficacious dosage form.  相似文献   

7.
Clofazimine (CLF) was formulated with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) as a solid solid dispersion (SSD) to increase the aqueous solubility and dissolution rate of the drug. Different molecular weights of PEG (1500, 4000, 6000, and 9000 Da) and PVP (14,000 and 44,000 Da) were used in different drug:carrier weight ratios (1:1, 1:5, and 1:9) and their effect on the dissolution performance of the drug was evaluated in USP Type 2 apparatus using 0.1 N HCl medium. The dissolution rate was compared with corresponding physical mixtures, a currently marketed soft gelatin capsule product, and free CLF. The effect of different methods of preparation (solvent/melt) on the dissolution rate of CLF was evaluated for PEG solid dispersions. Saturation solubility and phase solubility studies were carried out to indicate drug:carrier interactions in liquid state. Infrared (IR) spectroscopy and X-ray diffraction (XRD) were used to indicate drug:carrier interactions in solid state. Improvement in the drug dissolution rate was observed in solid dispersion formulations as compared to the physical mixtures. The dissolution rate improved with the decreasing weight fraction of the drug in the formulation. Polyvinyl pyrrolidone solid dispersion systems gave a better drug release profile as compared to the corresponding PEG solid dispersions. The effect of molecular weight of the PEG polymers did not follow a definite trend, while PVP 14,000 gave a better dissolution profile as compared to PVP 44,000. Improvement in saturation solubility of the drug in the solid dispersion systems was noted in all cases. Further, IR spectroscopy indicated drug:carrier interactions in solid state in one case and XRD indicated reduction in the crystallinity of CLF in another. It was concluded that solid-dispersion formulations of Clofazimine can be used to design a solid dosage form of the drug, which would have significant advantages over the currently marketed soft gelatin capsule dosage form.  相似文献   

8.
Peanut oil and Tween 80 blends devoid of any cosurfactant were employed in the formulation of different batches of liquid self-microemulsifying drug delivery systems (LSMEDDS) and their suitability as vehicles for the delivery of a typical lipophilic drug-griseofulvin-was investigated. The LSMEDDS were evaluated using the following parameters: phase separation, globule size, viscosity, solubility of griseofulvin, and partition coefficient. The release profile of griseofulvin from the optimized LSMEDDS was evaluated in citrate/phosphate buffer solutions of pH 2.0, pH 6.5, and pH 7.4. The results obtained indicated that there was significantly higher (alpha 相似文献   

9.
The purpose of this experimental work was the development of hydrophilic–lipophilic matrix tablets for controlled release of slightly soluble drug represented here by diclofenac sodium (DS). Drug dissolution profile optimization provided by soluble filler was studied. Matrix tablets were based on cetyl alcohol as the lipophilic carrier, povidone as the gel-forming agent, and common soluble filler, that is lactose or sucrose of different particle size. Physical properties of tablets prepared by melt granulation and drug release in a phosphate buffer of pH 6.8 were evaluated. In vitro studies showed that used filler type, filler to povidone ratio and sucrose particle size influenced the drug release rate. DS dissolution profile could be changed within a wide range from about 50% per 24 hours to almost 100% in 10 hours. The release constant values confirmed that DS was released from matrices by the diffusion and anomalous transport. The influence of sucrose particle size on the drug release rate was observed. As the particle size decreased, the drug release increased significantly and its dissolution profile became more uniform. Soluble fillers participated in the pore-forming process according to their solubility and particle size. Formulations containing 100 mg of the drug, 80 mg of cetyl alcohol, 40 mg of povidone, and 80 mg of either lactose or sucrose (particle size 250–125 μm) were considered optimal for 24-hour lasting dissolution of DS.  相似文献   

10.
Abstract

In vitro preformulation testing has shown that the solubility and dissolution rate of the model drug compound ucb 11056 are highly pH dependent. Considering this, different sustained-release (SR) oral dosage forms of ucb 11056 were developed aiming to obtain the most constant and complete release of the drug during transit in the gastrointestinal (GI) tract. Classical approaches based on the use of SR formulations such as hydrophilic matrix tablets or pellets coated with one film-forming polymer (Eudragit NE30D or L30D-55) did not fulfill all expectations on the basis of their in vitro evaluation, i.e., the drug release and pattern remained highly dependent on the pH of the dissolution medium. Therefore, taking advantage of the flexibility of release adjustment obtainable from coating of pellets with different kinds of pH-sensitive film layers, a quite satisfactory pH independence of the release characteristics was obtained using formulation blends of neutral and anionic acrylic polymers. For the selected SR pellets batch 15 coated with NE30D/L30D-55 (7:3), the tridimensional topographic representation of the drug release versus time and pH showed that, notwithstanding the pH-dependent aqueous solubility of the drug, the release profiles were relatively homogeneous for any pH value ranging between 1 and 7.  相似文献   

11.
This article aimed to improve the relative solubility and dissolution rate of ferulic acid (FA) by the use of spray-dried solid dispersions (SDs) in order to ensure its in vitro antioxidant potential and to enhance its in vivo anti-platelet effect. These SDs were prepared by spray-drying at 10 and 20% of drug concentration using polyvinylpyrrolidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) as carriers. SDs and physical mixtures (PM) were characterized by SEM, XRPD, FTIR spectroscopy and TGA analysis. Spray-dried SDs containing FA were successfully obtained. Relative solubility of FA was improved with increasing carrier concentration. PVP-K30 and PEG 6000 formulations showed suitable drug content values close to 100%, whereas PLX-188 presented mean values between 70 and 90%. Agglomerates were observed depending on the carrier used. XRPD patterns and thermograms indicated that spray-drying led to drug amorphization and provided appropriate thermal stability, respectively. FTIR spectra demonstrated no remarkable interaction between carrier and drug for PEG 6000 and PLX-188 SDs. PVP-K30 formulations had changes in FTIR spectra, which denoted intermolecular O–H???O?=?C bonds. Spray-dried SDs played an important role in enhancing dissolution rate of FA when compared to pure drug. The free radical-scavenging assay confirmed that the antioxidant activity of PEG 6000 10% SDs was kept. This formulation also provided a statistically increased in vivo anti-platelet effect compared to pure drug. In summary, these formulations enhanced relative solubility and dissolution rate of FA and chosen formulation demonstrated suitable in vitro antioxidant activity and improved in vivo anti-platelet effect.  相似文献   

12.
The purpose of this study was to increase the solubility of glipizide (gli) by solid dispersions SDs technique with polyvinylpyrrolidone (PVP) in aqueous media. The gli-PVP solid dispersion systems was prepared by physical mixing or spray drying method, and characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) analysis, Fourier transformation-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The elementary osmotic pumps (EOPs) were prepared with gli-PVP complex and the effect of the PVP percentages on the enhancing of gli dissolution rate was studied. The influences of various parameters e.g., drug- PVP ratio, level of solubility modifier, coating weight gain and diameter of drug releasing orifice on drug release profiles were also investigated. The solubility and dissolution rates of gli were significantly increased by solid dispersion using spray dried method as well as their physical mixture. The obtained results indicated that gli-PVP solid dispersion system has suitable solubility behavior in EOP tablets.  相似文献   

13.
ABSTRACT

Clofazimine (CLF) was formulated with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) as a solid solid dispersion (SSD) to increase the aqueous solubility and dissolution rate of the drug. Different molecular weights of PEG (1500, 4000, 6000, and 9000 Da) and PVP (14,000 and 44,000 Da) were used in different drug:carrier weight ratios (1:1, 1:5, and 1:9) and their effect on the dissolution performance of the drug was evaluated in USP Type 2 apparatus using 0.1 N HCl medium. The dissolution rate was compared with corresponding physical mixtures, a currently marketed soft gelatin capsule product, and free CLF. The effect of different methods of preparation (solvent/melt) on the dissolution rate of CLF was evaluated for PEG solid dispersions. Saturation solubility and phase solubility studies were carried out to indicate drug:carrier interactions in liquid state. Infrared (IR) spectroscopy and X-ray diffraction (XRD) were used to indicate drug:carrier interactions in solid state. Improvement in the drug dissolution rate was observed in solid dispersion formulations as compared to the physical mixtures. The dissolution rate improved with the decreasing weight fraction of the drug in the formulation. Polyvinyl pyrrolidone solid dispersion systems gave a better drug release profile as compared to the corresponding PEG solid dispersions. The effect of molecular weight of the PEG polymers did not follow a definite trend, while PVP 14,000 gave a better dissolution profile as compared to PVP 44,000. Improvement in saturation solubility of the drug in the solid dispersion systems was noted in all cases. Further, IR spectroscopy indicated drug:carrier interactions in solid state in one case and XRD indicated reduction in the crystallinity of CLF in another. It was concluded that solid-dispersion formulations of Clofazimine can be used to design a solid dosage form of the drug, which would have significant advantages over the currently marketed soft gelatin capsule dosage form.  相似文献   

14.
The purpose of this study was to increase the solubility of glipizide (gli) by solid dispersions SDs technique with polyvinylpyrrolidone (PVP) in aqueous media. The gli–PVP solid dispersion systems was prepared by physical mixing or spray drying method, and characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) analysis, Fourier transformation-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The elementary osmotic pumps (EOPs) were prepared with gli–PVP complex and the effect of the PVP percentages on the enhancing of gli dissolution rate was studied. The influences of various parameters e.g., drug- PVP ratio, level of solubility modifier, coating weight gain and diameter of drug releasing orifice on drug release profiles were also investigated. The solubility and dissolution rates of gli were significantly increased by solid dispersion using spray dried method as well as their physical mixture. The obtained results indicated that gli–PVP solid dispersion system has suitable solubility behavior in EOP tablets.  相似文献   

15.
Chen H  Wan J  Wang Y  Mou D  Liu H  Xu H  Yang X 《Nanotechnology》2008,19(37):375104
Nanonization strategies have been used to enhance the oral availability of numerous drugs that are poorly soluble in water. Exploring a facile nanonization strategy with highly practical potential is an attractive focus. Here, we report a novel facile nanoaggregation strategy for constructing drug nanoparticles of poorly soluble drugs with pH-dependent solubility by utilizing acid-base neutralization in aqueous solution, thus facilitating the exploration of nanonization in oral delivery for general applicability. We demonstrate that hydrophobic itraconazole dissolved in acid solution formed a growing core and aggregated into nanoparticles in the presence of stabilizers. The nanoparticles, with an average diameter of 279.3?nm and polydispersity index of 0.116, showed a higher dissolution rate when compared with the marketed formulation; the average dissolution was about 91.3%. The in vivo pharmacokinetic studies revealed that the nanoparticles had a rapid absorption and enhanced oral availability. The diet state also showed insignificant impact on the absorption of itraconazole from nanoparticles. This nanoaggregation strategy is a promising nanonization method with a facile process and avoidance of toxic organic solvents for oral delivery of poorly soluble drugs with pH-dependent solubility and reveals a highly practical potential in the pharmaceutical and chemical industries.  相似文献   

16.
The purpose of this research paper was the development of lipid nanoparticles (LN) formulation suitable for beclomethasone dipropionate (BDP) administration via the pulmonary route. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were prepared by high-shear homogenization method; the effects of process and formulation parameters on nanoparticles characteristics were investigated. LN were characterized in terms of morphology, size, encapsulation efficiency, in vitro drug release and aerosol aerodynamic properties. Nano-sized BDP-loaded LN with high entrapment efficiency values reaching 99% were successfully obtained. Application of in vitro drug release data to the Higuchi kinetic equation indicated a diffusion-controlled release from the lipidic matrix. Aerosolisation and subsequent cascade impaction measurements proved that SLN and NLC were efficiently nebulized yielding aerosols of a suitable particle size for BDP deep lung delivery. Results demonstrate that LN are promising nebulized carriers for BDP opening the way for lipophilic drug-targeting strategies by nebulization.  相似文献   

17.
Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.  相似文献   

18.
This study concerns a new compound named CRS 74 which has the property of inhibiting Human Immunodeficiency Virus (HIV) protease, an essential enzyme involved in HIV replication process. It is proved in this study that the original CRS 74 exhibits poor aqueous solubility and a very low dissolution rate, which can influence its bioavailability and clinical response. In an attempt to improve the dissolution rate, CRS 74 was recrystallized by liquid anti-solvent (LAS) crystallization. Ethanol was chosen as solvent and water as the anti-solvent. Recrystallized solids were compared with the original drug crystals in terms of physical and dissolution properties. Recrystallization without additives did not modify the CRS 74 dissolution profile compared to the original drug. CRS 74 was then recrystallized using different additives to optimize the process and formulate physicochemical properties. Steric stabilizer in organic phase ensured size-controlling effect, whereas electrostatic stabilizer in aqueous phase decreased particle agglomeration. Cationic additives avoided drug adsorption onto stainless steel T-mixer. In general, additive improved drug dissolution rate due to improvement of wetting properties by specific interactions between the drug and the additives, and ensured continuous production of CRS 74 by electrostatic repulsion.  相似文献   

19.
The present active pharmaceutical ingredient (API) is a lipophilic compound with a significant risk of not achieving therapeutic plasma concentrations due to solubility-limited absorption. The aim of the presented studies was to investigate whether three novel salts of a new selected candidate in the cardiovascular therapy area could be applied to improve intestinal absorption and the subsequent in vivo exposure. Three salts (chloride, hydrogen sulfate, and hemi-1.5-naphtalenedisulphonate) of the compound were manufactured and investigated regarding solubility, dissolution rate, and in vivo exposure in rats. The chemical and physical stability of the salt forms (and the crystalline parent compound) were followed in solid state, when dissolved and when formulated as microsuspensions. All salts showed improved solubility in investigated media, increased dissolution rate, and elevated in vivo exposures compared to a nanocrystal formulation (top-down) of the parent free base of the compound. The chloride- and the hydrogen sulfate salts of the API showed similar patterns regarding the chemical stability in solid state as the crystalline free base, while the salt formed of the hemi-1.5-naphtalenedisulphonic acid showed significantly improved stability. In conclusion, this study showed that three salts of a new selected candidate drug could be used to improve solubility, increase dissolution rate, and enhance oral absorption compared with a more commonly used nanocrystal formulation of the API. However, the identity of the counter ion appeared to be of less importance. On the other hand, only the salt of the hemi-1.5-naphtalenedisulphonic acid seemed to improve chemical stability compared with the API.  相似文献   

20.
Objective: Implementation of a new pharmaceutical technique to improve aqueous solubility and thus dissolution, enhancement of drug permeation, and finally formulation of a controlled release tablet loaded with glimepiride (GLMP).

Significance: Improve GLMP bioavailability and pharmacokinetics in type II diabetic patients.

Methods: Different polymers were used to enhance aqueous GLMP solubility of which a saturated polymeric drug solution was prepared and physically adsorbed onto silica. An experimental design was employed to optimize the formulation parameters affecting the preparation of GLMP matrix tablets. A compatibility study was conducted to study components interactions. Scanning electron microscope (SEM) was performed before and after the tablets were placed in the dissolution medium. An in vivo study in human volunteers was performed with the optimized GLMP tablets, which were compared to pure and marketed drug products.

Results: Enhancement of GLMP aqueous solubility, using the polymeric drug solution technique, by more than 6–7 times when compared with the binary system. All the studied formulation factors significantly affected the studied variables. No significant interaction was detected among components. SEM illustrated the surface and inner tablet structure, and confirmed the drug release which was attributed to diffusion mechanism. The volunteer group administered the optimized GLMP tablet exhibited higher drug plasma concentration (147.4?ng/mL), longer time to reach maximum plasma concentration (4?h) and longer t1/2 (7.236?h) compared to other groups.

Conclusions: Matrix tablet loaded with a physically modified drug form could represent a key solution for drugs with inconsistent dissolution and absorption profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号