首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

2.
Objective: To select a suitable ethosome-loaded Carbopol hydrogel formulation, specifically tailored for transdermal application that exhibits (i) plastic flow with yield stress of approximately 50–80?Pa at low polymer concentration, (ii) relatively frequency independent elastic (G′) and viscous (G″) properties and (iii) thermal stability.

Methods: Carbopol (C71, C934, C941, C971 or C974) hydrogels were prepared by dispersing Carbopol in distilled water followed neutralization by sodium hydroxide. The effects of Carbopol grade, Carbopol concentration, ethosome addition and temperature on flow (yield stress and viscosity) and viscoelastic (G′ and G″) properties of Carbopol hydrogel were evaluated. Based on the aforementioned rheological properties evaluated, suitable ethosome-loaded Carbopol hydrogel was selected. In-vitro permeation studies of diclofenac using rat skin were further conducted on ethosome-loaded Carbopol hydrogel along with diclofenac-loaded ethosomal formulation as control.

Results: Based on preliminary screening, C934, C971 and C974 grades were selected and further evaluated for flow and viscoelastic properties. It was observed that ethosome-loaded C974 hydrogel at concentration of 0.50 and 0.75% w/w, respectively, demonstrated acceptable plastic flow with distinct yield stress and a frequency independent G′ and G″. Furthermore, the flow and viscoelastic properties were maintained at the 4, 25 and 32?°C. The results from in vitro skin permeation studies indicate that ethosome-loaded C974 hydrogel at 0.5% w/w polymer concentration exhibited similar skin permeation as that of ethosomal formulation.

Conclusion: The results indicate that suitable rheological properties of C974 could facilitate in achieving desired skin permeation of diclofenac while acting as an efficient carrier system for ethosomal vesicles.  相似文献   

3.
Context: Ciclopirox olamine (CPO) is indicated in the treatment of vaginal fungal infections. The frequent and large dosing of available vaginal CPO creams gives rise to poor compliance amongst females. In such a situation a delivery system capable of providing sustained release of CPO is warranted and can be realized through incorporation of its liposomal formulation into a mucoadhesive gel base. The liposomal formulation would offer sustained release whereas mucoadhesive gel would prolong the contact with vaginal wall; thus avoiding frequent and large dosing.

Objective: The present study aimed at investigating mucoadhesive liposomal CPO gel for vaginal use.

Method: The study embarked on evaluating liposomal CPO and its Carbopol 974®P gel for stability at vaginal pH, release profile, rheological characteristics, mucoadhesive behavior and finally antifungal activity.

Results: The results revealed that CPO liposomes were stable at vaginal pH; its Carbopol gel released 58.75?±?6.4% of CPO at the end of 24?h which suggested sustained release. Rheology via viscometric, oscillatory stress sweep and oscillatory frequency sweep testing of the gel, studied at different temperatures and under different dilutions with vaginal fluid simulant testified pseudoplastic behavior of the gel. It also pointed towards the predominance of elastic behavior of the gel at all the dilutions. The gel exhibited good mucoadhesivity to sheep vaginal tissue. Furthermore, CPO entrapped in liposome too displayed antifungal activity.

Conclusion: The study undertaken recommended Carbopol 974®P gel loaded with CPO liposomes as a potential delivery system for treatment of fungal vaginal infections.  相似文献   

4.
Abstract

Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, in vitro release studies and stability studies. In vitro drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for in vivo pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (p?>?0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12?h).  相似文献   

5.
In the present study, carboxymethylchitosan (CMCS) was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for site specific drug delivery of lercanidipine hydrochloride (LERH). LERH was incorporated at the time of crosslinking of CMCS. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight, which were found to be 84·6% and 3·5 × 104 Da, respectively. The degree of substitution on prepared CMCS was found to be 0·68. All hydrogel formulations showed more than 86% and 77% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels were checked in different pH values, 1·2, 6·8 and 7·4, indicated pH responsive swelling characteristic with very less swelling at pH 1·2 and quick swelling at pH 6·8 followed by linear swelling at pH 7·4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependent on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, 1H-NMR, DSC and p-XRD studies, which confirmed formation of CMCS from chitosan and absence of any significant chemical change in LERH after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 was checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

6.
Tacrolimus (TAC), a non-steroidal anti-inflammatory and immunosuppressive agent, is used for the treatment of atopic dermatitis (AD) and skin immune diseases. TAC-loaded topical hydrogel formulations composed of carbomer, carnosine, transcutol P (diethylene glycol monoethyl ether) and humectant were prepared. For comparison, TAC-loaded topical cream-type formulations were also prepared and commercially available TAC ointment was used as a reference. A drug release study in vitro revealed that the total amount of TAC released from hydrogels over 24?h was approximately 30 times greater than that for the reference formulation. Compared to the reference ointment and creams, carbomer gel formulations showed higher skin permeation and retention of TAC (significantly different at p?相似文献   

7.
Abstract

Gel-formulations containing a nonsteroidal anti-inflammatory drug, tolmetin, were prepared using three different carbomers namely, Carbopol? 934, 940 and 941. Effects of cosolvent composition, carbomer type, carbomer concentration and drug concentration on drug release from the gels were analyzed by factorial design. Gels with high aqueous content yielded significantly higher tolmetin release rates than gels with lower aqueous content. Although no significant differences in drug release characteristics were observed between the three carbomer gels, there was a trend in the release profiles; fastest drug release was observed from Carbopol? 941 gels and the slowest drug release was observed from Carbopol? 940 gels. Increasing the carbomer concentration from 1% w/w to 2% w/w had no significant effect on drug release from gel formulations prepared with all the three different types of carbomers. However, increasing the tolmetin concentration in the gels from 1% w/w to 4% w/w resulted in a dramatic increase in drug release. An investigation of the mechanism of drug release from the gels revealed that tolmetin release was diffusion controlled, except at the outset.  相似文献   

8.
The objective of this study was to formulate a hydrogel-forming bioadhesive drug delivery system for oral administration of didanosine (ddI). The aim of this tablet dosage form is to improve the oral absorption of ddI by delivering it in small doses over an extended period and localizing it in the intestine by bioadhesion. Compressed tablets of ddI using Polyox® WSRN-303, Carbopol® 974P-NF, and Methocel® K4M as the bioadhesive release rate-controlling polymers were prepared. The effect of polymer concentration on the release profile and in vitro bioadhesion of the matrix tablets was studied. Tablet formulations with Polyox WSRN-303 (10%) and Methocel K4M (30%) showed 93 and 90% drug release, respectively, after 12 h. The drug release was found to be linear when fitted in the Higuchi equation (square-root time equation), suggesting zero-order release. Carbopol 974-P-NF was found to inhibit the complete release of ddI because of drug-polymer interaction; hence, is not suitable for formulation of ddI. Drug diffusion and swelling of the polymer (anomalous Fickian release) was found dominant in ddI release. In general, in vitro bioadhesion increased with an increase in polymer concentration. Tablets containing a single polymer can be designed to form hydrogels serving the dual purpose of bioadhesion and sustained release.  相似文献   

9.
Objective: The purpose of this work was to develop and evaluate buccoadhesive tablets of timolol maleate (TM) due to its potential to circumvent the first-pass metabolism and to improve its bioavailability.

Methods: The tablets were prepared by direct compression using two release modifying polymers, Carbopol 974P (Cp-974p) and sodium alginate (SA). A 32 full factorial design was employed to study the effect of independent variables, Cp-974p and SA, in various proportions in percent w/w, which influences the in vitro drug release and bioadhesive strengths. Physicochemical properties of the drug were evaluated by ultraviolet, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (P-XRD). Tablets were evaluated for hardness, thickness, weight variation, drug content, surface pH, swelling index, bioadhesive force and in vitro drug release.

Results: The FTIR and DSC studies showed no evidence of interactions between drug, polymers and excipients. The P-XRD study revealed that crystallinity of TM remain unchanged in optimized formulation tablet. Formulation F9 achieves an in vitro drug release of 98.967%?±?0.28 at 8?h and a bioadhesive force of 0.088 N?±?0.01211.

Conclusion: We successfully developed buccal tablet formulations of TM and describe a non-Fickian-type anomalous transport as the release mechanism.  相似文献   

10.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

11.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

12.
The aim of the present paper was the development of semi-solid (hydrogels) and solid (film) ophthalmic formulations for the controlled release of two mydriatics: phenylephrine and tropicamide. The formulations – based on polyvinylalcohol and hyaluronic acid – were characterized, and release studies were performed with three different in vitro set-ups, i.e. Franz-type diffusion cell, vial method and inclined plane; for comparison, a solution and a commercial insert, both clinically used to induce mydriasis, were evaluated. Both gels and film allowed for a controlled release of drugs, appearing a useful alternative for mydriatics administration. However, the release kinetic was significantly influenced by the method used, highlighting the need for optimization and standardization of in vitro models for the evaluation of drug release from ophthalmic dosage forms.  相似文献   

13.
Abstract

Objective: Although the melphalan (ML) used extensively for the management of breast cancer, its clinical application is limited due to significant hemolytic activity. In the present work, a comparative analysis of two distinct in situ-based thermogelling polymers of PEGylated ML was performed.

Methods: Briefly, the PEGylated conjugate of the melphalan (MLPEG 5000) for local and sustained drug release action is loaded into two different thermogelling polymeric systems, namely chitosan- and poloxamer-based systems. The synthesized conjugate was loaded to a chitosan (MLP 5000) and poloxamer-based (MPX-CG) thermogelling injectable hydrogels. These thermogelling hydrogels were evaluated for in vitro hydrolysis, in vitro hemolytic activity. and in vitro anticancer activity.

Results: The lower percent cumulative hydrolysis was witness for both the hydrogels. MPX-CG and MLP 5000 hydrogels as predicted had shown lower percent cumulative hydrolysis of 3.31?±?0.1 and 1.67?±?0.1 after 6?h. The percentage hemolysis of MPX-CG and MLP 5000 even at a concentration of 32?µg/ml was found to be 39.23?±?1.24% and 34.23?±?2.24%, observed at 1?h, respectively. Both the hydrogels showed similar anticancer pattern, the MPX-CG hydrogel showed low cell viability of 8.4?±?1.1% at a concentration of 150?µM and the MLP-5000 hydrogel showed slight higher cell viability (13.12?±?5.4%) as compared with MPX-CG hydrogel.

Conclusion: Hence, from the present study it can be well understood that both the chitosan- and the poloxamer-based thermogelling hydrogel proves to be an effective drug delivery systems for the delivery of the PEGylated conjugates.  相似文献   

14.
Cellulite is a common topographical alteration where skin acquires an orange peel or mattress appearance with alterations in adipose tissue and microcirculation. This work aims to develop and evaluate a topical niosomal gel formulae with good permeation to reach the subcutaneous fat layer. Several caffeine niosomal dispersions were prepared and incorporated into gel formulae using Carbopol 940 polymer, chemical penetration enhancers, and iontophoresis, then the prepared gels were applied onto the skin of rats and anticellulite activity of caffeine from the prepared gels compared to that of the commercial product Cellu Destock® was evaluated by histological study of the skin and measurement of plasma level of caffeine passing through the skin using liquid chromatography (LC/MS–MS). Results of histology revealed reduction of size and thickness of fatty layer of rat skin in the following order: FVII?>?FXIV?>?Cellu Destock®?>?FVII?+?Iontophoresis?>?FXIV?+?Iontophoresis. Pharmacokinetic results of caffeine in plasma revealed that Cmax, Tmax, and AUC0–12h decreased in the following order: FXIV?>?FVII?>?Cellu Destock®. These results conclude that incorporation of caffeine niosomal dispersion into gel matrix with penetration enhancers and iontophoresis resulted in improvement in penetration of caffeine through the skin into the underlying fatty layer in treatment of cellulite.  相似文献   

15.
New topical totally aqueous formulations that improve the low water solubility of minoxidil and realize an adequate permeability of drug in the skin are proposed. These formulations are lacking in propylene glycol and alcohol that are the principal irritant ingredients present in minoxidil commercial solutions. In order to enhance poor water solubility of minoxidil randomly methyl-β-cyclodextrin was used, and four hydrogels such as, calcium alginate, sodium alginate, carbopol 934 and hydroxyethylcellulose were utilized to ensure a prolonged time of contact with the scalp. The inclusion complex minoxidil/methyl-β-cyclodextrin with a molar ratio 1:1 was obtained by freeze drying and evaluated by NMR, FT-IR and DSC analysis. An apparent stability constant of formed inclusion complex was calculated by phase solubility diagram and its value was 400?M?1. The solid inclusion complex was used to prepare gel formulations with similar dose to minoxidil commercial solution. The gels were evaluated for various technological parameters including rheological behavior, in vitro drug release and ex vivo permeation through pig skin. The best performance was observed for the calcium alginate formulation.  相似文献   

16.
Hydrogels forming in-situ have gained great attention in the area of bone tissue engineering recently, they were also showed to be a good and less invasive alternative to surgically applied ones. The primal focus of this study was to prepare chitosan-glycerol phosphate thermosensitive hydrogel formed in-situ and loaded with risedronate (bone resorption inhibitor) in an easy way with no requirement of complicated processes or large number of equipment. Then we investigated its effectiveness for bone regeneration. In-situ forming hydrogels were prepared using chitosan cross-linked with glycerol phosphate and loaded with risedronate and nano-hydroxyapatite as bone cement. The prepared hydrogels were characterized by analyzing their gelation time at 37?°C, % porosity, swelling index, in-vitro degradation, rheological properties, and in-vitro drug release. Results showed that the in-situ hydrogels prepared using 2.5% (w/v) chitosan cross-linked with 50% (w/v) glycerol phosphate in the ratio (9:1, v/v) reinforced with 20?mg/mL and nano-hydroxyapatite possessed the most sustained drug release profile. This optimized formulation was further evaluated using DSC and FTIR studies, in addition to their morphological properties using scanning electron microscopy. The effect on Saos-2 cell line viability was evaluated also using MTT assay on the optimized hydrogel formulation in addition to their action on cell proliferation using fluorescence microscope. Moreover, calcium deposition on the hydrogel and alkaline phosphatase activity were evaluated. Risedronate-nano-hydroxyapatite loaded hydrogels significantly enhanced the Saos-2 cell proliferation in addition to enhanced alkaline phosphatase activity and calcium deposition. Such results suggest that risedronate-nano-hydroxyapatite loaded hydrogels present great biocompatibility for bone regeneration. Proliferation of cells, as well as deposition of mineral on the hydrogel, was an evidence of the biocompatible nature of the hydrogel. This hydrogel formed in-situ present a good less invasive alternative for bone tissue engineering.  相似文献   

17.
The aim of this study was to develop a pH-sensitive chitosan/polyvinyl pyrrolidone (PVP) based controlled drug release system for clarithromycin. The hydrogels were synthesized by cross-linking chitosan and PVP blend with glutaraldehyde to form a semi-interpenetrating polymer network (semi-IPN). These semi-IPNs were studied for their content uniformity, swelling index (SI), mucoadhesion, wettability, in vitro release and their release kinetics. The hydrogels showed more than 97% content of clarithromycin. These hydrogels showed high swelling and mucoadhesion under acidic conditions. The swelling may be due to the protonation of a primary amino group on chitosan. In acidic condition, chitosan would be ionized, and adhesion could have occurred between the positively charged chitosan and the negatively charged mucus. In the alkaline condition, less swelling and mucoadhesion was noticed. In vitro release study revealed that formulation containing chitosan (2% w/v) and PVP (4% w/v) in the ratio of 21:4 showed complete drug release after 12?h. Release profile showed that all the formulations followed non-Fickian diffusion mechanism. The cross-linking and compatibility of clarithromycin in the formulation was studied by Fourier transform infrared (FTIR) spectroscopic analysis, differential scanning calorimetry (DSC) and powder X-ray diffraction (p-XRD) study, which confirmed proper formation of semi-IPN and stability of clarithromycin in the formulations. The surface morphology of semi-IPN was studied before and after dissolution in simulated gastric fluid (SGF, pH 1.2) which revealed pores formation in membrane after dissolution. The results of study suggest that semi-IPNs of chitosan/PVP are potent candidates for delivery of clarithromycin in acidic environment.  相似文献   

18.
Objective: The main objective of this study is to develop a safer non-invasive treatment for nail infections since the current treatment regimen has drawbacks like, incidence of systemic side-effects and higher cost. Proposed topical treatment on the other hand can drastically improve the situation, hence highly desirable. This work was undertaken with a hypothesis to develop a transungual microemulsion gel for topical treatment of onychomycosis.

Methods: Benzyl alcohol and isopropyl myristate were used as oil, Pluronic F68 as surfactant and ethanol as co surfactant, in double-distilled water and loading itraconazole as the model antifungal drug. Pseudo-ternary phase diagram was developed by titrating different ratios of total oil and water with total surfactant, and Km ratio was fixed at 1:1. Microemulsion formulations were prepared based on the phase diagram and incorporated in gels by adding Carbopol 934P. Nail permeation enhancers like urea and salicylic acid were used to increase drug permeation through the nail plate. Parameters like drug loading, clarity, particle size distribution, drug entrapment efficiency (DEE), drug release profile, release kinetics and nail uptake were checked for the evaluation of the formulations.

Results: Complete release of drug from the formulation varied from 60 to 120?min. The optimized formulation had DEE of 92.75%, complete drug release in 60?min and highest nail uptake of 0.386%/mm2 (39?µg of drug) with 5% urea as nail permeation enhancer.

Conclusion: The formulation may prove beneficial in safer treatment of onychomycosis.  相似文献   

19.
The aim of this study was to further investigate the effect of drug loading, drug entrapment efficiency, the drug release profiles and biopharmaceutical point of views of amphotericin B (AmB) lipid formulations, that is, degree of aggregation by UV-spectroscopy, in vitro hemolytic and antifungal activities. The optimum drug loading was 2.5% by weight corresponded to lipid fraction in formulation. Increasing of the drug entrapment was achieved by blending small amount of phospholipid in solid lipid nanoparticle (SLN) dispersions. All AmB lipid dispersions were less aggregated species and hemolytic response than Fungizone® indicating that lipid nanoparticles could reduce its toxicity. The sustained release profiles of AmB formulations depended on its aggregated form and entrapment efficiency. Too high AmB loaded (5% w/w) showed a biphasic drug release profile probably due to some amounts of drug deposited on the nanosphere surface including in continuous phase which promptly released. For in vitro antifungal testing, all AmB lipid formulations were equal and more effective than both AmB itself and Fungizone®. These observations suggested that AmB loaded SLNs, nanostructured lipid carriers and modified SLNs by blending lecithin could enhance AmB solubility, prolong release characteristics, reduce toxicity and improve antifungal activity.  相似文献   

20.
Objective: Development of a hydrogel containing rutin at 0.025% (w/w) and evaluation of its in vivo efficacy in cutaneous wound healing in rats.

Methods: Hydrogels were prepared using Carbopol Ultrez® 10 NF and an aqueous dispersion of rutin in polysorbate 80. Hydrogels were characterized by means of pH measurement, rheological and spreadability analysis and rutin content determination by liquid chromatography. The in vivo healing effect was evaluated through the regression of skin lesions in rats and by analysis of oxidative stress.

Results and discussion: Hydrogels showed adequate pH values (5.50–6.50) and pseudoplastic non-Newtonian behavior. After 5 days of treatment of wounds, hydrogels containing rutin presented a higher decrease in the wound area compared to the control hydrogels. Analysis of the oxidative stress showed a decrease in lipid peroxidation and protein carbonyl content as well as an increase in catalase activity after the treatment with the hydrogel containing rutin. Furthermore, this treatment increased total protein levels.

Conclusion: This study shows for the first time the feasibility of using dermatological formulations containing rutin to improve skin wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号