首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phyllanthin, a poorly water-soluble herbal active component from Phyllanthus amarus, exhibited a low oral bioavailability. This study aims at formulating self-microemulsifying drug delivery systems (SMEDDS) containing phyllanthin and evaluating their in-vitro and in-vivo performances. Excipient screening was carried out to select oil, surfactant and co-surfactant. Formulation development was based on pseudo-ternary phase diagrams and characteristics of resultant microemulsions. Influences of dilution, pH of media and phyllanthin content on droplet size of the resultant emulsions were studied. The optimized phyllanthin-loaded SMEDDS formulation (phy-SMEDDS) and the resultant microemulsions were characterized by viscosity, self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. In-vitro dissolution and oral bioavailability in rats of phy-SMEDDS were studied and compared with those of plain phyllanthin. Phy-SMEDDS consisted of phyllanthin/Capryol 90/Cremophor RH 40/Transcutol P (1.38:39.45:44.38:14.79) in % w/w. Phy-SMEDDS could be emulsified completely within 6?min and formed fine microemulsions, with average droplet range of 27–42?nm. Phy-SMEDDS was robust to dilution and pH of dilution media while the resultant emulsion showed no phase separation or drug precipitation after 8?h dilution. The release of phyllanthin from phy-SMEDDS capsule was significantly faster than that of plain phyllanthin capsule irrespective of pH of dissolution media. Phy-SMEDDS was found to be stable for at least 6 months under accelerated condition. Oral absorption of phyllanthin in rats was significantly enhanced by SMEDDS as compared with plain phyllanthin. Our study indicated that SMEDDS for oral delivery of phyllanthin could be an option to enhance its bioavailability.  相似文献   

2.
Acyclovir is a potent anti-viral agent useful in the treatment of Herpes Simplex Virus (HSV) infections. Acyclovir exerts its antiviral activity by competitive inhibition of viral DNA through selective binding of acyclovir to HSV-thymidine kinase. The main purpose of this work was to develop self-microemulsifying drug delivery system (SMEDDS) for oral bioavailability enhancement of acyclovir. Solubility of acyclovir was determined in various vehicles. SMEDDS is mixture of oils, surfactants, and co-surfactants, which are emulsified in aqueous media under conditions of gentle agitation and digestive motility that would be encountered in the gastro-intestinal (GI) tract. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region dilution study was also performed for optimization of formulation. SMEDDS was evaluated for its percentage transmittance, Assay of SMEDDS, phase separation study, droplet size analysis, zeta potential, electrophoretic mobility, and viscosity. The developed SMEDDS formulation contained acyclovir (50 mg), Tween 60 (60%), glycerol (30%) and sunflower oil (9%) was compared with the pure drug solution by oral administrating to male albino rats. The absorption of acyclovir from SMEDDS form resulted about 3.5 fold increase in bioavailability compared with the pure drug solution. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds such as acyclovir by oral route.  相似文献   

3.
Purpose: To develop a high-throughput formulation screening (HTFS) system for self-microemulsifying drug delivery system (SMEDDS) formulations. Methods: Formulations were prepared by dispensing surfactants and a model compound (Nilvadipine) dissolved in ethanol and oil with a robotic liquid dispenser. Screenings of emulsion particle size and phase stability were conducted for selecting SMEDDS formulations by a turbidity assay. Results: Formulations were prepared at 40 minute/96-formulation. Both the screenings were conducted at 1 minute/96-formulation. SMEDDS formulations and the most suitable hydrophilic surfactant (HS)/lipophilic surfactant (LS) combination, which formed the largest SMEDDS area on its corresponding phase diagram, were selected by SMEDDS–HTFS system with minimal manpower (one person) and compound consumption (0.2 mg/formulation). Conclusions: SMEDDS–HTFS system enabled rapid and efficient selections of SMEDDS formulations and the most suitable HS/LS combination for SMEDDS.  相似文献   

4.
Purpose: A high-throughput formulation screening (HTFS) system that enabled to rapidly and efficiently select self-microemulsifying drug delivery system (SMEDDS) formulations has been developed in our previous study. The purpose of this study was to investigate the applicability of the HTFS system to SMEDDS designs. Methods: A poorly soluble drug (Nilvadipine), an oil (Sefsol-218), 11 hydrophilic surfactants (HS), and 10 lipophilic surfactants (LS) were used. Formulations were prepared and SMEDDS formulations were chosen by the HTFS system. A HS with the largest number of SMEDDS formulations was selected. In the selected HS system, a LS with the largest number of SMEDDS formulations was selected. Formulations with minimum turbidity at each ratio of the selected HS/LS were chosen as optimized formulations. Results: A total of 2455 formulations were prepared and SMEDDS formulations were selected using the HTFS system. From the screening data, HCO60 was selected as a superior emulsifiable HS, and Plurol (PLUROL OLEIQUE CC497) was selected as a suitable LS to HCO60. Five optimized formulations were chosen from the HCO60/Plurol system. The formulations formed fine microemulsions (<33.6 nm) without phase separation and drug precipitation. These formulation designs were conducted using 600 mg of the drug at a rate of 400 formulations/person/day. Conclusion: SMEDDS formulations could be rapidly and efficiently designed using the HTFS system.  相似文献   

5.
The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Berberine hydrochloride (BBH), an important bioactive compound from Chinese Medicines with poor water solubility. Pseudoternary phase diagrams were constructed using oil, surfactant and co-surfactant types to identify the efficient self-microemulsification region. SMEDDS was characterized by morphological observation, droplet size, zeta-potential determination, stability, in vitro release and in vivo bioavailability study. The optimal formulation with the best self-microemulsifying and solubilization ability consisted of 40% (w/w) of ethyl linoleate and oleic acid (2:1), 35% (w/w) Tween-80 and 25% (w/w) glycerol. The SMEDDS of BBH could exhibit good stability. In vitro release test showed a complete release of BBH from SMEDDS was in 5 h. In vivo results indicated that the peak plasma concentration (Cmax) and the area under the curve (AUC0→12 h) of SMEDDS of BBH were higher than the commercial tablet by 163.4% and 154.2%, respectively. The relative bioavailability of SMEDDS of BBH was enhanced about 2.42-fold compared with the commercial tablet in rats. The study confirmed that the SMEDDS formulation could be used as a possible alternative to traditional oral formulations of BBH to improve its bioavailability.  相似文献   

6.
The objective of the study was to develop a self-microemulsifying drug delivery system (SMEDDS), also known as microemulsion preconcentrate, for oral delivery of five poorly water-soluble nutraceuticals or bioactive agents, namely, vitamin A, vitamin K2, coenzyme Q10, quercetin and trans-resveratrol. The SMEDDS contained a 1:1 mixture (w/w) of Capmul MCM NF (a medium chain monoglyceride) and Captex 355 EP/NF (a medium chain triglyceride) as the hydrophobic lipid and Tween 80 (polysorbate 80) as the hydrophilic surfactant. The lipid and surfactant were mixed at 50:50 w/w ratio. All three of the SMEDDS components have GRAS or safe food additive status. The solubility of nutraceuticals was determined in Capmul MCM, Captex 355, Tween 80, and the SMEDDS (microemulsion preconcentrate mixture). The solubility values of vitamin A palmitate, vitamin K2, coenzyme Q10, quercetin, and trans-resveratrol per g of SMEDDS were, respectively, 500, 12, 8, 56, and 87?mg. Appropriate formulations of nutraceuticals were prepared and filled into hard gelatin capsules. They were then subjected to in vitro dispersion testing using 250?mL of 0.01 N HCl in USP dissolution apparatus II. The dispersion test showed that all SMEDDS containing nutraceuticals dispersed spontaneously to form microemulsions after disintegration of capsule shells with globule size in the range of 25 to 200?nm. From all formulations, except that of vitamin K2, >80–90% nutraceuticals dispersed in 5–10?min and there was no precipitation of compounds during the test period of 120?min. Some variation in dispersion of vitamin K2 was observed due to the nature of the material used (vitamin K2 pre-adsorbed onto calcium phosphate). The present report provides a simple and organic cosolvent-free lipid-based SMEDDS for the oral delivery of poorly water-soluble nutraceuticals. Although a 50:50 w/w mixture of lipid to surfactant was used, the lipid content may be increased to 70:30 without compromising the formation of microemulsion.  相似文献   

7.
Objective of this study was to prepare, characterize and evaluate a self-microemulsifying drug delivery system (SMEDDS) with the aim to improve the solubility and dissolution of apigenin. Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of apigenin loaded SMEDDS was optimized by a simplex lattice experiment design. The optimal formulation of SMEDDS obtained was comprised of 60% Cremophor®EL, 30% Transcutol®HP and 10% Capryol? 90. The equilibrium solubility of apigenin in SMEDDS was about 15 mg/g, and it could increase the solubility of apigenin in water for about 7500 folds. Apigenin loaded SMEDDS could turn into microemulsion when diluted with distilled water and the droplets were spherical under transmission electron microscope (TEM), the average particle size was 17.1 nm and zeta potential ?5.18 mV. In vitro dissolution studies showed about 95% of apigenin was released within 10 min. All of the results showed that SMEDDS could enhance the solubility and dissolution of apigenin, and would be a potential carrier to improve the oral absorption of apigenin, a poorly water soluble drug.  相似文献   

8.
D-optimal design and the desirability function were applied to optimize a self-microemulsifying drug delivery system (SMEDDS). The optimized key parameters were the following: 1) particle size of the dispersed emulsion, 2) solubility of the drug in the vehicle, and 3) the vehicle compatibility with the hard gelatin capsule. Three formulation variables, PEG200, a surfactant mixture, and an oil mixture, were included in the experimental design. The results of the mathematical analysis of the data demonstrated significant interactions among the formulation variables, and the desirability function was demonstrated to be a powerful tool to predict the optimal formulation for the explored system.  相似文献   

9.
Purpose: To design a high drug loading formulation of self-microemulsifying/micelle system.

Methods: A poorly-soluble model drug (CH5137291), 8 hydrophilic surfactants (HS), 10 lipophilic surfactants (LS), 5 oils, and PEG400 were used. A high loading formulation was designed by a following stepwise approach using a high-throughput formulation screening (HTFS) system: (1) an oil/solvent was selected by solubility of the drug; (2) a suitable HS for highly loading was selected by the screenings of emulsion/micelle size and phase stability in binary systems (HS, oil/solvent) with increasing loading levels; (3) a LS that formed a broad SMEDDS/micelle area on a phase diagram containing the HS and oil/solvent was selected by the same screenings; (4) an optimized formulation was selected by evaluating the loading capacity of the crystalline drug. Aqueous solubility behavior and oral absorption (Beagle dog) of the optimized formulation were compared with conventional formulations (jet-milled, PEG400).

Results: As an optimized formulation, d-α-tocopheryl polyoxyethylene 1000 succinic ester: PEG400?=?8:2 was selected, and achieved the target loading level (200?mg/mL). The formulation formed fine emulsion/micelle (49.1?nm), and generated and maintained a supersaturated state at a higher level compared with the conventional formulations. In the oral absorption test, the area under the plasma concentration-time curve of the optimized formulation was 16.5-fold higher than that of the jet-milled formulation.

Conclusions: The high loading formulation designed by the stepwise approach using the HTFS system improved the oral absorption of the poorly-soluble model drug.  相似文献   

10.
To characterize the intestinal absorption behavior of olmesartan medoxomil (OLM) and to evaluate the absorption-improving potential of a self-microemulsifying drug delivery system (SMEDDS), we performed in situ single-pass intestinal perfusion (SPIP) and in vivo pharmacokinetic studies in rats. The SPIP study revealed that OLM is absorbed throughout whole intestinal regions, favoring proximal segments, at drug levels of 10–90 μM. The greatest value for effective permeability coefficient (Peff) was 11.4?×?10?6 cm/s in the duodenum (90 μM); the lowest value was 2.9?×?10?6 cm/s in the ileum (10 μM). A SMEDDS formulation consisting of Capryol 90, Labrasol, and Transcutol, which has a droplet size of 200?nm and self-dispersion time of 21 s, doubled upper intestinal permeability of OLM. The SMEDDS also improved oral bioavailability of OLM in vivo: a 2.7-fold increase in the area under the curve (AUC) with elevated maximum plasma concentration (Cmax) and shortened peak time (Tmax) compared to an OLM suspension. A strong correlation (r2?=?0.955) was also found between the in situ jejunal Peff and the in vivo AUC values. Our study illustrates that the SMEDDS formulation holds great potential as an alternative to increased oral absorption of OLM.  相似文献   

11.
Context: Ritonavir (RTV) is a human immunodeficiency virus (HIV) protease inhibitor (PI) with activity against HIV, practically insoluble in water and recommended to co-administer as a booster along with other HIV-PI to enhance their bioavailability. The present study is aimed to enhance the dissolution and oral bioavailability of water-insoluble RTV using the Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS).

Objective: To enhance the dissolution and oral bioavailability of water-insoluble RTV using the S-SMEDDS.

Material and methods: Liquid SMEDDS (L-SMEDDS) of RTV was formulated by the optimizing ratio of Imwitor 988 (Oil), Cremophor EL and Cremophor RH 40 (1:1) (surfactant) and Capmul GMS K-50 (cosurfactant). Optimized L-SMEDDS showed improved dissolution rate of RTV compared to pure RTV powder. Optimized L-SMEDDS of RTV was adsorbed on Neusilin US-2 using a simple wet granulation technique with selected excipients to convert it into S-SMEDDS.

Results and discussion: Optimized L-SMEDDS showed an improved dissolution rate of RTV compared to pure RTV powder. Droplet size of resultant microemulsion of L-SMEDDS of RTV was observed between 16 and 22 nm and independent of pH (i.e. 0.1 N HCl and water). Conversion of the crystalline form of RTV to amorphous form was observed when RTV formulated into SMEDDS form as per X-ray diffraction study. In vitro dissolution study, stability study of optimized S-SMEDDS confirmed the formulation of stable and improved dissolution of RTV. Relative bioavailability of RTV was determined in male Wistar rats and pharmacokinetic parameters were calculated by the comparison of optimized S-SMEDDS versus aqueous suspension of RTV. S-SMEDDS improved the plasma profile in terms of maximum plasma concentration (Cmax), and area under curve (AUC0–24h), which is almost twofolds higher than the aqueous suspension of RTV.

Conclusion: S-SMEDDS tablet of RTV was formulated successfully by adsorbing optimized L-SMEDDS of RTV on Neusilin-US2® as a potential carrier with enhanced solubility and relative oral bioavailability compared to pure RTV by twofolds.  相似文献   


12.
Tacrolimus (FK 506), a poorly soluble immunosuppressant is currently formulated in nonaqueous vehicle containing hydrogenated castor oil derivative for intravenous administration. Hydrogenated castor oil derivatives are associated with acute anaphylactic reactions. This proposes to overcome the problems of poor aqueous solubility of the drug and the toxicity associated with currently used excipients by the development of a new parenterally acceptable formulation using self-microemulsifying drug delivery system (SMEDDS). Solubility of FK 506 in various oils, surfactants, and cosurfactants was determined to identify SMEDDS components. Phase diagrams were constructed at different ratios of surfactants:cosurfactant (K(m)) to determine microemulsion existence area. Influence of oily phase content, K(m), aqueous phase composition, dilution, and incorporation of drug on mean globule size of microemulsions was studied. SMEDDSs were developed using ethyl oleate as oily phase and Solutol HS 15 as surfactant. Glycofurol was used successfully as a cosurfactant. Developed SMEDDS could solubilize 0.8% (wt/wt) FK 506 and on addition to aqueous phase could form spontaneous microemulsion with mean globule size < 30 nm. The resulting microemulsion was iso-osmotic, did not show any phase separation or drug precipitation even after 24 h, and exhibited negligible hemolytic potential to red blood cells.  相似文献   

13.
The purpose of this work is to prepare a self-microemulsifying drug delivery system (SMEDDS) for risedronate sodium (RSD) and to compare the permeability with RSD solution. The solubility of RSD was determined in different vehicles. Phase diagrams were constructed to determine the optimum concentration of oil, surfactant, and cosurfactant. RSD SMEDDS was prepared by using a mixture of soybean oil, cremophor EL, span 80, and transcutol (2.02:7.72:23.27:61.74, w/w, respectively). The prepared RSD SMEDDS was characterized by droplet size value. In vitro Caco-2 cell permeability studies were performed for SMEDDS and solution of radioactive (99?mTc-labeled RSD) and nonradioactive RSD. The experimental results indicated that RSD SMEDDS has good stability and its droplet size is between 216.68?±?3.79 and 225.26?±?7.65 during stability time. In addition, RSD SMEDDS has higher permeability value than the RSD solution for both radioactive and nonradioactive experiments. The results illustrated the potential use of SMEDDS for delivery of poorly absorbed RSD.  相似文献   

14.
A solid form of self-microemulsifying drug delivery system (Solid SMEDDS) was developed by spray-drying with dextran as the inert solid carrier, to improve the oral bioavailability of a poorly water-soluble drug, fenofibrate. The optimized liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Capryol PGMC (15/75/10%v/v) with 10% w/v fenofibrate gave a z-average diameter of around 240?nm. There was no significant difference in the mean droplet size and size distribution of the emulsions obtained from the liquid and solid forms of SMEDDS. Solid state characterizations of solid SMEDDS showed that the crystal state of fenofibrate in solid SMEDDS was converted from crystalline to amorphous form. Solid SMEDDS had significantly higher dissolution rates than the drug powder, due to its fast self-emulsification in the dissolution media. Furthermore, the AUC value of solid SMEDDS was twofold greater than that of the powder, indicating this formulation greatly improved the oral bioavailability of drug in rats. Thus, these results suggest that solid SMEDDS could be used as an effective oral solid dosage form to improve dissolution and oral bioavailability of fenofibrate.  相似文献   

15.
Olmesartan medoxomil (OM) is a hydrophobic antihypertensive drug with low bioavailability (26%) and is known to have adverse effects such as celiac disease and enteropathy. The purpose of this study was to develop SMEDDS to increase bioavailability and decrease potential side effects of OM. Hydrophilic lipophilic balance was calculated by testing solubility of OM in different oils, surfactants, and cosurfactants to obtain the most suitable combination of SMEDDS. Pseudoternary phase diagram was used to select the better oil/water formulation of SMEDDS. After a test for 3-month stability, dissolution tests and parallel artificial membrane permeability assay (PAMPA) were conducted to investigate drug solubility and permeability. Biodistribution of fluorescent marked SMEDDS was observed by using in vivo imaging system. The pharmacodynamics of the drug were determined by measuring blood pressure from tails of rats. At the end of the experiment, intestines were examined for adverse effects of OM. Compared with tablet formulation according to the dissolution study, SMEDDS formulation showed 1.67 times improvement in solubility of OM. PAMPA studies suggested a much faster permeability rate for OM SMEDDS compared to the suspension form. Labeled SMEDDS gave 3.96 times stronger fluorescent emission than control dye administered mice in in vivo imaging system (IVIS®) studies, indicating an increased bioavailability. Treating effect of SMEDDS was 3.1 times more efficient compared to suspension in hypertensive rats. It caused neither celiac-like enteropathy nor diarrhea, during 21-day noninvasive blood pressure system (NIBP) assay. Our results suggest that SMEEDS formulation improves dissolution and oral bioavailability of OM while reducing its adverse effects.  相似文献   

16.
Abstract

Context: Lipoidal systems have particularly shown potential for specific accumulation in areas with inflamed tissue increasing the selectivity of local drug delivery.

Objective: Formulation and evaluation of self-microemulsifying drug delivery system (SMEDDS) for colon-specific drug delivery for effective treatment of colonic diseases.

Method: Ternary phase diagram was used to optimize level of oil, surfactant and co-surfactant to optimize SMEDDS and were evaluated for percent transmittance, emulsification time, in vitro release, myeloperoxidase (MPO) activity and intestinal accumulation. The spray dried SMEDDS were filled in capsules which were enteric coated with Eudragit S-100 at 10% weight gain to ensure SMEDDS delivery at colon. The spray dried SMEDDS were also evaluated for IR, DSC, XRD, SEM and stability study.

Result: In ternary phase diagram, Capmul MCM C8 and Capmul PG12 NF with surfactant (Tween 20) and co-surfactant (PG) in ratio 2:1 and 3:1, respectively, showed maximum emulsification area. These liquid SMEDDS show maximum transmittance, globule size of 90–30?nm. The spray-dried SMEDDS with diluents show good flow property. The units of MPO activity show lower level as compared to pure drug and control group, histopathology results supports better healing with SMEDDS. This was attributed to accumulation of SMEDDS in inflammatory area as compared to drug which was further proved by accumulation study. Enteric-coated capsule containing SMEDDS are able to deliver drug, specifically at the colonic region.

Conclusion: Higher accumulation of lipoidal drug in inflammatory area and specific release of liposomes by enteric-coated capsules provide better option for the treatment of colonic disease.  相似文献   

17.
The primary objective of this study was to develop lipid-based self-microemulsifying drug delivery systems (SMEDDS) without using any organic cosolvents that would spontaneously form microemulsions upon dilution with water. Cosolvents were avoided to prevent possible precipitation of drug upon dilution and other stability issues. Different polysorbates, namely, Tween 20, Tween 40, Tween 60, and Tween 80, were used as surfactants, and Captex 355 EP/NF (glycerol tricaprylate/caprate) or its 1:1 mixture with Capmul MCM NF (glycerol monocaprylocaprate) were used as lipids. Captex 355-Tween-water ternary phase diagrams showed that oil-in-water microemulsions were formed only when the surfactant content was high (80–90%) and the lipid content low (10–20%). Thus, mixtures of Tweens with Captex 355 alone were not suitable to prepare SMEDDS with substantial lipid contents. However, when Captex 355 was replaced with the 1:1 mixture of Captex 355 and Capmul MCM, clear isotropic microemulsion regions in phase diagrams with sizes in the increasing order of Tween 20?相似文献   

18.
Acyclovir is a potent anti-viral agent useful in the treatment of Herpes Simplex Virus (HSV) infections. Acyclovir exerts its antiviral activity by competitive inhibition of viral DNA through selective binding of acyclovir to HSV-thymidine kinase. The main purpose of this work was to develop self-microemulsifying drug delivery system (SMEDDS) for oral bioavailability enhancement of acyclovir. Solubility of acyclovir was determined in various vehicles. SMEDDS is mixture of oils, surfactants, and co-surfactants, which are emulsified in aqueous media under conditions of gentle agitation and digestive motility that would be encountered in the gastro-intestinal (GI) tract. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region dilution study was also performed for optimization of formulation. SMEDDS was evaluated for its percentage transmittance, Assay of SMEDDS, phase separation study, droplet size analysis, zeta potential, electrophoretic mobility, and viscosity. The developed SMEDDS formulation contained acyclovir (50 mg), Tween 60 (60%), glycerol (30%) and sunflower oil (9%) was compared with the pure drug solution by oral administrating to male albino rats. The absorption of acyclovir from SMEDDS form resulted about 3.5 fold increase in bioavailability compared with the pure drug solution. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds such as acyclovir by oral route.  相似文献   

19.
The effectiveness of an interactive mixture as a rapid drug delivery system is compared with that of a solid dispersion. The influences of drug load, particle size, and crystallinity of these test systems are investigated. The interactive mixtures and solid dispersions were prepared from polyethylene glycol (PEG) 3350 and hydrophobic nifedipine drug by means of physical mixing and melting methods, respectively. The formed products were subjected to drug particle size and crystallinity analyses, and dissolution tests. In comparison with the interactive mixtures, the solid dispersions with low drug load were more effective as a rapid drug delivery system, as the size of a given batch of drug particles was markedly reduced by the molten PEG 3350. The rate and extent of drug dissolution were mainly promoted by decreasing effective drug particle size. However, these were lower in the solid dispersions than in the interactive mixtures when a high load of fine drug particles was used as the starting material. This was attributed to drug coarsening during the preparation of the solid dispersion. Unlike solid dispersions, the interactive mixtures could accommodate a high load of fine drug particles without compromising its capacity to enhance the rate and extent of drug dissolution. The interactive mixture is appropriate for use to deliver a fine hydrophobic drug in a formulation requiring a high drug load.  相似文献   

20.
Objective: The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route.

Significance: The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray.

Methods: The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus–BUD formulation.

Results: The freeze-dried Soluplus–BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334?±?0.0178 m2/g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension.

Conclusions: Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号