首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-?-caprolactone and poly(d,l-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit® RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 µm and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively), but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

2.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

3.
Context: Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs.

Objective: To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ).

Methods: Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12?h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied.

Results and discussion: The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3–4?min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer–Peppas model, which suggested that drug release was due to diffusion through polymer swelling.

Conclusion: Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.  相似文献   

4.
Objectives: The study was aimed to improve bioavailability of baclofen by developing gastroretentive floating drug delivery system (GFDDS).

Methods: Preliminary optimization was done to select various release retardants to obtain minimum floating lag time, maximum floating duration and sustained release. Optimization by 32 factorial design was done using Polyox WSR 303 (X1) and HPMC K4M (X2) as independent variables and cumulative percentage drug released at 6?h (Q6h) as dependent variable.

Results: Optimized formulation showed floating lag time of 4–5 s, floated for more than 12?h and released the drug in sustained manner. In vitro release followed zero ordered kinetics and when fitted to Korsemeyer Peppas model, indicated drug release by combination of diffusion as well as chain relaxation. In vivo floatability study confirmed floatation for more than 6?h. In vivo pharmacokinetic studies in rabbits showed Cmax of 189.96?±?13.04?ng/mL and Tmax of 4?±?0.35?h for GFDDS. The difference for AUC(0–T) and AUC(0–∞) between the test and reference formulation was statistically significant (p > 0.05). AUC(0–T) and AUC(0–∞) for GFDDS was 2.34 and 2.43 times greater than the marketed formulation respectively.

Conclusion: GFDDS provided prolonged gastric residence and showed significant increase in bi oavailability of baclofen.  相似文献   

5.
The aim of this study was to develop a high-dose tablet formulation of the poorly soluble carbamazepine (CBZ) with sufficient tablet hardness and immediate drug release. A further aim was to investigate the influence of various commercial CBZ raw materials on the optimized tablet formulation.

Materials and methods: Hydroxypropyl cellulose (HPC-SL) was selected as a dry binder and crospovidone (CrosPVP) as a superdisintegrant. A direct compacted tablet formulation of 70% CBZ was optimized by a 32 full factorial design with two input variables, HPC (0–10%) and CrosPVP (0–5%). Response variables included disintegration time, amount of drug released at 15 and 60?min, and tablet hardness, all analyzed according to USP 31.

Results and discussion: Increasing HPC-SL together with CrosPVP not only increased tablet hardness but also reduced disintegration time. Optimal condition was achieved in the range of 5–9% HPC and 3–5% CrosPVP, where tablet properties were at least 70 N tablet hardness, less than 1?min disintegration, and within the USP requirements for drug release. Testing the optimized formulation with four different commercial CBZ samples, their variability was still observed. Nonetheless, all formulations conformed to the USP specifications.

Conclusions: With the excipients CrosPVP and HPC-SL an immediate release tablet formulation was successfully formulated for high-dose CBZ of various commercial sources.  相似文献   

6.
Objective: Double loaded micelles (DLM) in which paclitaxel (PTX) and docetaxel (DTX) were co-solubilized with monomethoxy poly(ethylene glycol)-block-poly(d,l-lactide) (mPEG-PLA) copolymer were prepared and evaluated in an aim to investigate the effect of a combination of PTX and DTX on the stability of mPEG-PLA micelles compared to single drug-loaded micelles (SDM), especially that recent clinical anticancer formulations are limited by the existence of toxic excipients and stability issues.

Materials and methods: The SDM and DLM of PTX and DTX were prepared by a solvent evaporation method. Micellar size, size distribution, drug loading content and drug release were investigated. Transmission electron microscopy was used to investigate the stabilization mechanism.

Results: The drug loading efficiency of both PTX and DTX in DLM and SDM were 25% and 10%, respectively. 1H NMR showed a successful encapsulation of both drugs in the polymeric micelle. DLM showed better physical stability at drug concentrations higher than 1?mg/mL compared to SDM. Moreover, DLM, SDM-PTX and SDM-DTX were stable for 24, 9 and 1?h, respectively. The stabilization mechanism of DLM was investigated, a network structure of DLM was observed in TEM graphs. Furthermore, DLM showed complete and faster drug release compared to SDM. mPEG-PLA double loaded micelles can deliver two poorly water soluble anticancer drugs at clinically relevant doses. The obtained results offer a promising alternative for double drug therapy without any formulation associated undesirable effects and encourage further in vivo development and optimization of the DLM as a drug delivery system for anticancer drugs.  相似文献   

7.
Objective: The purpose of this work was to develop and evaluate buccoadhesive tablets of timolol maleate (TM) due to its potential to circumvent the first-pass metabolism and to improve its bioavailability.

Methods: The tablets were prepared by direct compression using two release modifying polymers, Carbopol 974P (Cp-974p) and sodium alginate (SA). A 32 full factorial design was employed to study the effect of independent variables, Cp-974p and SA, in various proportions in percent w/w, which influences the in vitro drug release and bioadhesive strengths. Physicochemical properties of the drug were evaluated by ultraviolet, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (P-XRD). Tablets were evaluated for hardness, thickness, weight variation, drug content, surface pH, swelling index, bioadhesive force and in vitro drug release.

Results: The FTIR and DSC studies showed no evidence of interactions between drug, polymers and excipients. The P-XRD study revealed that crystallinity of TM remain unchanged in optimized formulation tablet. Formulation F9 achieves an in vitro drug release of 98.967%?±?0.28 at 8?h and a bioadhesive force of 0.088 N?±?0.01211.

Conclusion: We successfully developed buccal tablet formulations of TM and describe a non-Fickian-type anomalous transport as the release mechanism.  相似文献   

8.
The objective of the present study was to develop a sustained release gastro-retentive (SRGR) tablet formulation of nicardipine hydrochloride (HCl) for once-a-day dosing using the quality by design (QbD) approach. The quality target product profile of nicardipine HCl SRGR tablet formulation was defined, and critical quality attributes (CQAs) were identified. Potential risk factors were identified using a fish bone diagram and failure mode effect analysis (FMEA) tool and screened by the Plackett–Burman design, and finally nicardipine HCl SRGR tablet formulation was optimized using the Box–Behnken design. The tablets were prepared by a direct compression technique using polymers such as hydroxypropylmethylcellulose (HPMC K15M), glyceryl behenate, alone or in combinations and other standard excipients. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of polymers and sodium bicarbonate on the drug release profile and floating properties were investigated as these parameters are likely to affect the desired once-a-day dosing regimen and finally the therapeutic efficacy of SRGR drug delivery systems. It was observed that formulation variables X1: Glyceryl behenate (mg/tab) and X2: HPMC K15M (mg/tab) strikingly influenced the drug release (%) (Y1), whereas floating lag time (min) (Y2) was significantly impacted by the formulation variable X3: Sodium bicarbonate (mg/tab). A design space plot within which the CQAs remained unchanged was established at a lab scale. In conclusion, this study demonstrated the suitability of a glyceryl behenate-HPMC K15M polymer combination along with sodium bicarbonate to achieve SRGR tablet formulation for once-a-day dosing of nicardipine HCl using the systematic QbD approach.  相似文献   

9.
The aim was to design sterile biodegradable microparticulate drug delivery systems based on poly(dl-lactide) (PLA) and poly(?-caprolactone) (PCL) and containing ivermectin (IVM), an antiparasitic drug, for subcutaneous administration in dogs. The drug delivery system should: (i) ensure a full 12-month protection upon single dose administration; (ii) be safe with particular attention regarding IVM dosage and its release, in order to prevent over dosage side effects. This preliminary work involves: polymer selection, evaluation of the effects of γ-irradiation on the polymers and IVM, investigation and set up of suitable microparticle preparation process and parameters, IVM-loaded microparticles in vitro release evaluation.

Results of gel permeation chromatography analysis on the irradiated polymers and IVM mixtures showed that combination of IVM with the antioxidant α-tocopherol (TCP) reduces the damage extent induced by irradiation treatment, independently on the polymer type.

Solvent evaporation process was successfully used for the preparation of PLA microparticles and appropriately modified; it was recognized as suitable for the preparation of PCL microparticles. Good process yields were achieved ranging from 76.08% to 94.72%; encapsulation efficiency was between 85.76% and 91.25%, independently from the polymer used. The type of polymer and the consequent preparation process parameters affected microparticle size that was bigger for PCL microparticles (480–800?µm) and solvent residual that was >500?ppm for PLA microparticles. In vitro release test showed significantly faster IVM release rates from PCL microparticles, with respect to PLA microparticles, suggesting that a combination of the polymers could be used to obtain the suitable drug release rate.  相似文献   

10.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

11.
In situ forming implants (ISI) prepared from biodegradable polymers such as poly(d,l-lactide) (PLA) and biocompatible solvents can be used to obtain sustained drug release after parenteral administration. The aim of this work was to study the effect of several biocompatible solvents with different physico-chemical properties on the release of ivermectin (IVM), an antiparasitic BCS II drug, from in situ forming PLA-based implants. The solvents evaluated were N-methyl-2-pyrrolidone (NMP), 2-pyrrolidone (2P), triacetine (TA) and benzyl benzoate (BB). Hansen’s solubility parameters of solvents were used to explain polymer/solvent interactions leading to different rheological behaviours. The stability of the polymer and drug in the solvents were also evaluated by size exclusion and high performance liquid chromatography, respectively. The two major factors determining the rate of IVM release from ISI were miscibility of the solvent with water and the viscosity of the polymer solutions. In general, the release rate increased with increasing water miscibility of the solvent and decreasing viscosity in the following order NMP>2P>TA>BB. Scanning electron microscopy revealed a relationship between the rate of IVM release and the surface porosity of the implants, release being higher as implant porosity increased. Finally, drug and polymer stability in the solvents followed the same trends, increasing when polymer-solvent affinities and water content in solvents decreased. IVM degradation was accelerated by the acid environment generated by the degradation of the polymer but the drug did not affect PLA stability.  相似文献   

12.
Glycyl-l-histidyl-l-lysine–Cu(II) (GHK–Cu2+)-loaded Zn-pectinate microparticles in the form of hydroxypropyl cellulose (HPC) compression-coated tablets were prepared and their in vitro behavior tested. GHK–Cu2+ delivery to colon can be useful for the inhibition of matrix metalloproteinase, with the increasing secretion of tissue inhibitors of metalloproteinases (TIMPS),which are the major factors contributing in mucosal ulceration and inflammation in inflammatory bowel disease. The concentration of peptide was determined spectrophotometrically. The results obtained implied that surfactant ratio had a significant effect on percent production yield (1.25 to 1.75 w/w; 72.22% to 80.84%), but cross-linking agent concentration had not. The entrapment efficiency (EE) was found to be in the range of 58.25–78.37%. The drug-loading factor significantly increased the EE; however, enhancement of cross-linking agent concentration decreased it. The release of GHK–Cu2+ from Zn-pectinate microparticles (F1–F8) in simulated intestinal fluid was strongly affected by cross-linking agent concentration and drug amount (50?mg for F1–F6; 250?mg for F7–F8), but not particularly affected by surfactant amount. Release profiles represented that the microparticles released 50–80% their drug load within 4?h. Therefore, the optimum microparticle formulation (F8) coated with a relatively hydrophobic polymer HPC to get a suitable colonic delivery system. The optimum colonic delivery tablets prepared with 700?mg HPC-SL provided the expected delayed release with a lag time of 6?h. The effects of polymer viscosity and coat weight on GHK–Cu2+ release were found to be crucial for the optimum delay of lag time. The invention was found to be promising for colonic delivery.  相似文献   

13.
Context: The l-alanyl-l-glutamine peptide (AGP) has been effective to promote acute glycemia recovery during long-term insulin-induced hypoglycemia (IIH), and the oral administration of AGP is suggested to prevent prolonged hypoglycemia, such as nocturnal hypoglycemia.

Objective: Considering the ability of AGP on glycemia recovery and AGP’s fast metabolism, the aim of current study was to obtain and characterize ethylcellulose microparticles to deliver the drug for a prolonged time.

Materials and Methods: Microparticles were prepared by simple and double emulsification/hardening method and characterized by scanning electron microscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) and FT-Raman spectroscopy and in vitro release.

Results and Discussion: Spherical structures with a mean diameter between 9.30?µm and 13.19?µm were formed. TG analysis showed that the thermal stability of AGP was even more increased by encapsulation with ethylcellulose. In addition, TG, DSC, FTIR and FT-Raman analyses proved that AGP was encapsulated in a molecular way. Higher values of encapsulation efficiency were observed for the microparticles prepared by double emulsification (57.83–83.67%) than for those prepared by simple emulsification (18.37%). However, the last ones could release the peptide in a quicker and more extensive manner than those prepared by double emulsification.

Conclusion: For the first time, microparticles containing AGP were developed and exhibited prolonged in vitro release as well as protection to the drug, and it could be considered as a dosage form for patients who suffer from insulin-induced hypoglycemia and/or nocturnal hypoglycemia.  相似文献   

14.
Background: Incorporation of proteins/peptide drugs into nanoparticulate drug delivery system is one of the effective approaches to increase the stability of protein/peptide drugs against enzymatic degradation, to release them in a controlled fashion and to achieve site-specific drug delivery.

Objective: Our goal was to design and evaluate poly-?-caprolactone (PCL) nanoparticles using bovine serum albumin (BSA) as a model protein. d-α-tocopheryl polyethylene glycol 1000 (vitamin E TPGS) was used as an emulsifier in the fabrication of these nanoparticles.

Methods: Double emulsion solvent evaporation method was employed to formulate BSA-loaded PCL nanoparticles and the nanoparticles thus prepared were further characterized.

Results: The size of BSA-loaded PCL nanoparticles were in the range of 400–500?nm with a polydispersity index (PDI) of 0.195 and zeta potential was about ?28.6 mV. Scanning electron microscopy (SEM) confirmed the presence of smooth and spherical surface of nanoparticles. Encapsulation efficiency was about 85% and a yield of 70–75% was attained. BSA was released in a biphasic pattern with an initial 20% release within 2?h followed by a slower release patter over 5 days. Flow cytometry and fluorescence microscopy was used to study the uptake of these nanoparticles. Circular dichroism (CD) results showed that there was no significant effect of formulation conditions on the secondary structure of BSA.

Conclusion: Based on the results obtained, these TPGS-emulsified PCL nanoparticles proved to be potential carriers for the delivery of protein/peptide drugs.  相似文献   

15.
Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES? for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion–spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES? system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12?h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5?h) as compared to the CODES? and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES?] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.  相似文献   

16.
The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.  相似文献   

17.
Objective: Aim of the present study was to prepare curcumin (CUR) loaded biodegradable crosslinked gelatin (GE) film to alleviate the existing shortcomings in the treatment of periodontitis.

Significance: Gelatin film was optimized to provide anticipated mucoadhesive strength, mechanical properties, folding endurance, and prolonged drug release over treatment duration, for successful application in the periodontitis.

Methods: The film was developed by using solvent casting technique and “Design of Experiments” approach was employed for evaluating the influence of independent variables on dependent response variables. Solid-state characterization of the film was performed by FTIR, XRD, and SEM. Further, prepared formulations were evaluated for drug content uniformity, surface pH, folding endurance, swelling index, mechanical strength, mucoadhesive strength, in vitro biodegradation, and in vitro drug release behavior.

Results: Solid state characterization of the formulation showed that CUR is physico-chemically compatible with other excipients and CUR was entrapped in an amorphous form inside the smooth and uniform film. The optimized film showed degree of crosslinking 51.04?±?2.4, swelling index 138.10?±?1.25, and folding endurance 270?±?3 with surface pH around 7.0. Crosslinker concentrations positively affected swelling index and biodegradation of film due to altered matrix density of the polymer. Results of in vitro drug release demonstrated the capability of the developed film for efficiently delivering CUR in a sustained manner up to 7?days.

Conclusions: The developed optimized film could be considered as a promising delivery strategy to administer medicament locally into the periodontal pockets for the safe and efficient management of periodontitis.  相似文献   

18.
This study demonstrates the use of factorial design for the preparation of microsponges of carvedilol with nanometric pores using the response surface methodology and to establish the functional relationships between two operating variables of Eudragit RS100 and sucrose. The response variables selected for this study were percent drug entrapment (Y1), time taken to release 35% of drug (Y2), percent drug release after 24?h (Y3), percent dissolution efficiency (DE) (Y4) and the angle of repose (Y5). The overall calculated desirability was found to be 0.8065 for the optimised formulation OF1. The response surface analysis of the desirability function with the independent levels indicated that the overall desirability increases with high levels of Eudragit RS100 and sucrose content. The optimum robust formulation (OF1) contains high levels of Eudragit RS100 (400.0?mg) and sucrose (350.21?mg), satisfying the predetermined constraints and goals of all the selected response variables. The scanning electron microscopy of OF1 indicated the spherical shape of microsponges with numerous pores on the surface. The atomic force microscopic study suggested the presence of nanometric pores on the surface of microsponges which may facilitate the release of the drug. Compatibility studies using the Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimeter indicated the absence of any incompatibility between carvedilol and excipients used to prepare microsponges.  相似文献   

19.
Background: The TRI-726 polymeric drug delivery matrix is a newly-developed biocompatible hydrogel exhibiting in situ reverse-thermal gelling, mucoadhesivity, and sustained-erosion properties.

Methods: Using two model drugs, clindamycin hydrochloride and acetaminophen, we determined the gelling temperatures, in vitro release profiles, kinetics of matrix erosion, rheological properties, mucoadhesive strength, microbiological activity of released clindamycin, and biocompatibility when in contact with cells.

Results: It was demonstrated that none of the excipients contained in the TRI-726 polymer matrix caused any loss in clindamycin’s antimicrobial activity following incorporation into the polymer matrix. Thus, the new patent pending TRI-726 drug delivery matrix was both inert and non-reactive toward the incorporated clindamycin in terms of chemical degradation (<10% degradation under accelerated conditions over 6 months) and antimicrobial activity.

Conclusions: This new drug delivery matrix is capable of releasing a wide variety of water-soluble drug compounds over an approximate 10-day period, due primarily to protracted dissolution/erosion of the three-dimensional polymer matrix in an aqueous-based biophase. Additionally, TRI-726 exhibits excellent mucoadhesive properties that would allow a candidate drug/TRI-726 formulation to adhere and remain at a potential application site for an extended period of time. Lastly, the biocompatibility tests affirmed the non-toxic and biocompatible nature of TRI-726 when in contact with cells, which suggests its suitability and versatility as a drug delivery matrix for the targeted administration of a wide range of pharmaceutical compounds where in situ gelation, protracted release of the active, and mucoadhesion of the formulation are desired.  相似文献   

20.
The objective of this study is to formulate biodegradable in situ microparticles (ISM) containing lornoxicam for post-operative and arthritic pain management. ISM emulsions were prepared according to 25 full factorial experimental design to investigate the influence of formulation variables on the release profile of the drug. The independent variables studied are the polymer type, polymer inherent viscosity, polymer concentration, oil type and polymer:oil ratio. In vitro drug release, microscopical examination, particle size determination and syringeability measurement were selected as dependent variables. The effect of γ-sterilization on the prepared formulae was also examined. The prepared formulae showed extended drug release over two weeks, and flow time below 5?s/ml. Scanning electron microscope revealed that the prepared microparticles were spherical in shape, with diameter ranging from 3.45 to 22.78?µm. In vivo pharmacokinetic evaluation of two selected optimum formulations in rabbits showed prolonged drug absorption indicated by delayed Tmax and the extended mean residence time. In conclusion, the prepared injectable ISM could be a promising approach for providing extended delivery of lornoxicam with low initial burst effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号