首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Metronidazole, a BCS class I drug, could be waived based on the BCS principles, thus enabling in vitro dissolution data as a surrogate of BE study. However, the impact of dissolution profiles of metronidazole tablets on the in vivo performance has never been studied systematically. So the aim of the present study was to conduct a multipronged approach of in vitro dissolution, in silico simulation, and in vivo study to evaluate the effect of dissolution performance on oral absorption of metronidazole tablets, as well as the accuracy of PBPK model to predict the oral bioavailability for BCS I drug. The results demonstrated that the PBPK models were successfully established for metronidazole immediate-release tablets. Bioequivalence comparison in dogs indicated that the test products were bioequivalent to the Reference (80%–125%, 90% CI), and even their dissolution profiles in vitro were significantly different. And the prediction of oral pharmacokinetics of the three formulations in human was also highly similar. In addition, the behavior of in vitro dissolution profiles and in vivo absorption was elucidated. These findings will contribute to understanding the potential risks during the formulation development and justifying the biowaiver for metronidazole tablets.  相似文献   

2.
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol® HD5 ATO). The two formulations attained release profiles of QF over 24?h similar to that of Seroquel® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro–in vivo correlations.  相似文献   

3.
Abstract

Context: Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge.

Objective: The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel.

Materials and methods: Model drugs were coated in fluidized bed. Disintequik? ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment.

Results and discussion: Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3?min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R?≥?0.970).

Conclusion: Drug particle coating with Eudragit® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.  相似文献   

4.
Abstract

Attempts to establish and utilize in vitro/in vivo correlations for the assessment of extended-release (ER) solid oral dosage forms was reemphasized at a recent International Congress. In 1988 the United States Pharmacopeial's (USP) Subcommittee on Biopharmaceutics proposed 3 levels of such correlations, A, B and C in decreasing order of importance. The highest order, level A, is assumed when successful prediction of the complete drug serum/plasma concentrations versus time profile using dissolution data is achieved. This report describes the successful establishment of Level A correlations for 2 different ER oral dosage forms of theophylline using the “Biorelevant” technique first proposed by Leeson et al in 1985. Dissolution studies were undertaken on the 2 different formulations, namely, Theodur ® 300 mg tablets, and Retafyllin 300 mg tablets. The dissolution studies were performed using the USP Apparatus 2 (paddle) in buffered media over the pH range 3.0 to 7.5. These data were subsequently used to simulate in vivo profiles, which, under specific dissolution conditions were extremely well correlated with the in vivo data following administration of the respective dosage forms to healthy human volunteers.  相似文献   

5.
A quality-by-design approach was adopted to develop telmisartan potassium (TP) tablets, which were bioequivalent with the commercially available Micardis® (telmisartan free base) tablets. The dissolution pattern and impurity profile of TP tablets differed from those of Micardis® tablets because telmisartan free base is poorly soluble in water. After identifying the quality target product profile and critical quality attributes (CQAs), drug dissolution, and impurities were predicted to be risky CQAs. To determine the exact range and cause of risks, we used the risk assessment (RA) tools, preliminary hazard analysis and failure mode and effect analysis to determine the parameters affecting drug dissolution, impurities, and formulation. The range of the design space was optimized using the face-centered central composite design among the design of experiment (DOE) methods. The binder, disintegrant, and kneading time in the wet granulation were identified as X values affecting Y values (disintegration, hardness, friability, dissolution, and impurities). After determining the design space with the desired Y values, the TP tablets were formulated and their dissolution pattern was compared with that of the reference tablet. The selected TP tablet formulated using design space showed a similar dissolution to that of Micardis® tablets at pH 7.5. The QbD approach TP tablet was bioequivalent to Micardis® tablets in beagle dogs.  相似文献   

6.
To accurately predict the in vivo performance of drugs from an in vitro dissolution test, the dissolution conditions used are supposed to be similar to those present in the gastrointestinal milieu. Post-prandial gastric fluid contains partially digested food mixtures consisting of fat, protein and carbohydrate. Despite this, the compendia dissolution medium recommended to simulate the gastric fluid is still composed of a simple solution of hydrochloric acid and sodium chloride with or without the addition of pepsin. Therefore, in this investigation, biorelevant dissolution media were developed to evaluate the impact of food constituents; milk with different fat contents, egg albumin, gelatin, casein, gluten, carbohydrates and amino acids on the intrinsic dissolution behavior of ketoconazole. Most of the food additives that were evaluated enhanced the apparent solubility of the drug but to different extents. The greatest enhancement in dissolution was observed in media containing either neutral amino acids or media based on milk mixtures. The formation of complexes between the drug and the additives most likely accounted for the solubilizing effect and in milk-containing media, the effect was attributed to the whole complex structure of milk rather than simply its fat content. These results highlight the potential effect of the type of ingested meal on drug dissolution and subsequent bioavailability.  相似文献   

7.
Objective: This study aimed to develop and validate an in vitro dissolution method based on in silico–in vivo data to determine whether an in vitroin vivo relationship could be established for rivaroxaban in immediate-release tablets.

Significance: Oral drugs with high permeability but poorly soluble in aqueous media, such as the anticoagulant rivaroxaban, have a major potential to reach a high level of in vitroin vivo relationship. Currently, there is no study on scientific literature approaching the development of RIV dissolution profile based on its in vivo performance.

Methods and results: Drug plasma concentration values were modeled using computer simulation with adjustment of pharmacokinetic properties. Those values were converted into drug fractions absorbed by the Wagner–Nelson deconvolution approach. Gradual and continuous dissolution of RIV tablets was obtained with a 30?rpm basket on 50?mM sodium acetate +0.2% SDS, pH 6.5 medium. Dissolution was conducted for up to 180?min. The fraction absorbed was plotted against the drug fraction dissolved, and a linear point-to-point regression (R2?=?0.9961) obtained.

Conclusion: The in vitro dissolution method designed promoted a more convenient dissolution profile of RIV tablets, whereas it suggests a better relationship with in vivo performance.  相似文献   

8.
In the present research, controlled-release propranolol hydrochloride tablets were prepared for twice-daily administration, allowing more uniform plasmatic levels of the drug. Pharmaceutical formulations were prepared with hydrophobic Eudragit® RSPO. The physical properties of the tablets were determined. Dissolution tests were performed in capsules containing the raw material using the following dissolution media: (A) distilled water, (B) simulated gastric juice without enzymes, and (C) simulated enteric juice without enzymes. A dissolution test was also performed for simulated samples (tablets) using distilled water as the dissolution medium.  相似文献   

9.
Objective: The current investigation is focused on the formulation and in vivo evaluation of optimized solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of amisulpride (AMS) for improving its oral dissolution and bioavailability.

Methods: Liquid SNEDDS (L-SNEDDS) composed of Capryol? 90 (oil), Cremophor® RH40 (surfactant), and Transcutol® HP (co-surfactant) were transformed to solid systems via physical adsorption onto magnesium aluminometasilicate (Neusilin US2). Micromeretic studies and solid-state characterization of formulated S-SNEDDS were carried out, followed by tableting, tablet evaluation, and pharmacokinetic studies in rabbits.

Results: Micromeretic properties and solid-state characterization proved satisfactory flow properties with AMS present in a completely amorphous state. Formulated self-nanoemulsifying tablets revealed significant improvement in AMS dissolution compared with either directly compressed or commercial AMS tablets. In vivo pharmacokinetic study in rabbits emphasized significant improvements in tmax, AUC(0–12), and AUC(0–∞) at p?<?.05 with 1.26-folds improvement in relative bioavailability from the optimized self-nanoemulsifying tablets compared with the commercial product.

Conclusions: S-SNEDDS can be a very useful approach for providing patient acceptable dosage forms with improved oral dissolution and biovailability.  相似文献   

10.
Abstract

Physicochemical evaluation of polyethylene oxide (PEO) polymers with various molecular weights was performed at molecular (polymeric dispersion) and bulk level (powders, polymeric films, and tablets) with the aim of specifying polymer critical material attributes with the main contribution to drug release from prolonged-release tablets (PRTs). For this purpose, grades of PEO with low, medium, and high viscosity were used for formulating PRTs with a good soluble drug substance (dose solubility volume 15?ml). The results revealed a good correlation (r2=0.88) between in?vivo data (pharmacokinetic parameters: Cmax and AUC) and the elastic property of PEO films determined with the nanoindentation method, demonstrating that film level can also be used for the in?vivo prediction of drug dissolution. The study confirmed that polymer molecular weight and its viscosity are the most important critical material attributes affecting drug dissolution (in?vitro) and in?vivo bioavailability (e.g. Cmax and AUC). Our research revealed that the nanoindentation technique can distinguish well between various types of polymers, classifying PEO as the most ductile and polyvinyl alcohol as the most brittle. Finally, our study provides an approach for the determination of exact physical attributes of PEO as a critical material attribute from clinically relevant data, and it therefore fulfills the basic principles of product development by Quality by Design.  相似文献   

11.
Backgrounds: Rebamipide (REB) is classified as a Biopharmaceutics Classification System (BCS) Class-IV compound with poor aqueous solubility and poor permeability. The local concentration in the mucosa makes REB exhibiting the therapeutic activities, and the strategy of increasing the dissolution rate has the possibility to improve the oral gastrointestinal (GI) distribution when using REB nanosuspensions.

Objective: The purpose of this work was to prepare REB nanosuspensions (REB-NSs) by combining neutralization with microfluidization to improve its dissolution rate and orally pharmacokinetic properties.

Methods: The feasibility of using acid-base neutralization and microfluidization to prepare REB-NSs was studied, and the preparation was optimized by central composite design (CCD). Physical states were characterized by using some technical methods, while the plasma drug concentration and GI distribution in rodents were determined.

Results: The experimental results identified a formulation with 10 mg/mL REB, 0.9% (w/v) Lutrol F127, and 0.6% (w/v) Kollidon 90F. The dissolution rate of the dried REB-NSs was faster than that of Mucosta® tablets in different media, and the pharmacokinetic study showed a slight increase (1.3-fold and 1.1-fold) in the AUC0–12 h compared with unprocessed conventional suspensions (CSs) and solutions. Also, the GI distribution of REB-NSs improved compared with REB-CSs, and this would be preferable to assist in protecting GI mucosa.

Conclusion: The REB-NSs prepared by the combining method exhibited a higher plasma drug concentration and superior GI distribution, thereby demonstrating positive results for preparing nanosuspensions of local effective BCS IV drugs with pH dependence such as REB by this method.  相似文献   

12.
Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.  相似文献   

13.
In this study, a new discriminative dissolution condition for lacidipine tablets was developed by the established in vitroin vivo relationship. Series of dissolution media of phosphate buffer solution (PBS) covering the pH range of 1–7.2 and pH 6.8 PBS containing different concentrations of sodium dodecyl sulfate (SDS), were prepared and used to investigate the dissolution behavior of lacidipine tablets. There was an obvious difference in the dissolution profiles of the both brands in pH 6.8 PBS medium containing 0.1% SDS. The pharmacokinetic study of the two lacidipine tablets was carried out in the healthy beagle dogs at a single dose of 4?mg. Statistical comparison of the AUC0–24, Cmax, and Tmax showed a significant difference in the two brand tablets, coinciding with the dissolution performance with pH 6.8 PBS containing 0.1% SDS. The superiority of the proposed system, pH 6.8 PBS containing 0.1% SDS, could serve as a dissolution medium for lacidipine tablets, and more important it could discriminate the in vivo pharmacokinetic behavior for different brands of products. In summary, in vivo pharmacokinetic evaluation is essential to develop an appropriate in vitro dissolution condition for oral solid dosage forms of poorly soluble drugs.  相似文献   

14.
Controversies surround levothyroxine sodium as a drug and product, and are reflected in compendia (USP vs BP) differences in levothyroxine sodium tablets specifications concerning potency limit and dissolution test conditions, and in lack of consensus on several issues such as whether the drug BCS class I or III. We have recently published a clinical study in patients comparing the efficacy of multisource 100?mcg levothyroxine sodium tablets (three sources, two brands, a total of five batches). Clinical efficacy and dissolution rate data varied among the tablet batches studied and indicated that brand/source interchangeability could not be claimed. The efficacy parameters showed good correlation with dissolution data generated under BP 2014, but not under USP 2014 dissolution test conditions. In the present study, we decided to expand the number of tablet batches studied in vitro to a total of 12, to report potency and content uniformity data missing in the clinical study, and to further examine the discrepancy in dissolution results based on the medium used. The wide range of batch age in the studied samples allowed investigating the effect of batch age on in-vitro tablet performance parameters. Generated potency values indicated the prevalence of super-potent tablet batches. The dissolution data reflected the effect of compendia monograph differences in dissolution medium. The results also indicated an inverse relationship between tablet potency and batch age and, between dissolution and batch age. The possible effect of potency results on the generated dissolution data was discussed. Statistical significance of correlations examined was assessed by linear and non-linear regression analysis. Statistical significance was evident for the relation between batch age and BP 2014 dissolution data, compared to USP 2014 dissolution results.  相似文献   

15.
The objective of this study was to develop and validate the in vitro–in vivo correlations (IVIVCs) of three commercially available immediate-release solid dosage forms of indapamide using drug dissolution/absorption simulating system (DDASS). The in vitro dissolution profiles of three brands of immediate-release tablets were obtained using the USP I basket method and DDASS. A single-dose, three-way, crossover pharmacokinetic study for the tablets was carried out in six beagle dogs. Correlation models were developed for each immediate release formulation using cumulative percentage dissolved/eluted (Fd) versus cumulative percentage absorbed (Fa) and cumulative percentage permeated (Fp) versus cumulative percentage absorbed (Fa). Prediction errors were estimated for the Cmax and AUC to determine the validity of the correlation. Level A IVIVCs were established for the three brands between in vitro (dissolution and permeation) data from DDASS and in vivo data from dogs. Predicted plasma concentrations of each commercial brand were obtained from the dissolution and permeation profile data using the correlation models. A percent prediction error of <15% for the Cmax and AUC was found for all of the formulations, which validates the internal predictability of the IVIVC models obtained. However, the IVIVC models from the permeation data failed to predict the AUC. The results support the use of in vitro dissolution and permeation data as a surrogate for bioequivalent study and suggest that DDASS can be applied as an in vitro system for the validated-IVIVC development of BCS II solid drug formulations.  相似文献   

16.
Objective: The purpose of this study was to develop hydroxypropylmethylcellulose (HPMC)-based sustained release (SR) tablets for tolterodine tartrate with a low drug release variation.

Methods: The SR tablets were prepared by formulating a combination of different grades of HPMC as the gelling agents. The comparative dissolution study for the HPMC-based SR tablet as a test and Detrusitol® SR capsule as a reference was carried out, and the bioequivalence study of the two products was also conducted in human volunteers.

Results: The amount of HPMC, the grade of HPMC and the combination ratio of different grades of HPMC had remarkable effects on drug release from the SR tablets. Both the test and reference products had no significant difference in terms of comparative dissolution patterns in four different media (f2 > 50). Furthermore, the dissolution method and rotation speed showed no effects on the drug release from the two products. The 90% confidence intervals of the AUC0–36 and Cmax ratios for the test and reference products were within the acceptable bioequivalence intervals of log0.8–log1.25.

Conclusions: A HPMC-based SR tablet for tolterodine tartrate with a low release variation was successfully developed, which was bioequivalent to Detrusitol® SR capsule.  相似文献   

17.
The objective of this study is to develop, in vitro and in vivo evaluation of novel approaches for controlled release of paroxetine hydrochloride hemihydrate (PHH) in comparison to patented formulation PAXIL CR® tablets of GlaxoSmithKline (Geomatrix? technology). In one of the approaches, hydrophilic core matrix tablets containing 85% of the dose were prepared and further coated with methacrylic acid copolymer to delay the release. An immediate release coating of 15% was given as top coat. The tablets were further optionally coated using ethyl cellulose. In the second approach, hydrophobic matrix core tablets containing metharylic acid copolymer were prepared. In the third approach, PHH was granulated with enteric polymer and further hydrophobic matrix core tablets were prepared. The effect of polymer concentration, level of enteric coating on drug release was evaluated by in vitro dissolution study by varying dissolution apparatus and the rotation speeds. It was found that increase in concentration of high viscosity hydroxypropylmethylcellulose (HPMC) resulted in reduction of the release rate. The drug release was observed to be dependent on the level of enteric coating and ethyl cellulose coating, being slower at increased coating. The release mechanism of PHH followed zero-order shifting to dissolution dependent by the increase of HPMC content. The formulation was stable without change in drug release rate. In vivo study in human volunteers confirmed the similarity between test and innovator formulations. In conclusion, HPMC-based matrix tablets, which were further coated using methacrylic acid copolymer, were found to be suitable for the formulation of single layer-controlled release PHH.  相似文献   

18.
This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.  相似文献   

19.
Background: The aim of this study was to evaluate matrix tablets containing different ratios of Carbopol® 971P (CP) to low-viscosity sodium alginate (SA) and assess their suitability for pH-independent controlled drug release. Methods: Two processing methods (physical mixing, PM and spray-drying, SD) were applied before compaction and the release from corresponding matrices was compared. The release from CP-SA PM matrices was also investigated using three model drugs (paracetamol, salicylic acid, and verapamil HCl) and two dissolution media (0.1 N HCl or phosphate buffer, pH?=?6.8), and the release rate, mechanism, and pH-dependence were characterized by fitting of Higuchi and Peppas models, and evaluation of similarity factor. Furthermore, swelling behavior of CP-SA matrix tablets was studied for evaluating its impact on drug release. Results: The processing method (SD or PM) markedly affected the drug release from CP-SA matrices. ANOVA tests showed significant effects of the CP:SA ratio and drug type on the release rate (expressed by the constant, KH, from Higuchi model) and of the dissolution medium on the release mechanism (expressed by the exponent, n, from Peppas model). Similarity factor (f2) indicated that the CP:SA ratios ≥?25:75 and ≥?50:50 were suitable for pH-independent release of paracetamol and salicylic acid, respectively, although for verapamil HCl, the matrix with low CP:SA ratio (0:100) showed remarkably reduced pH-dependence of release. Swelling parameters (water uptake and mass loss) were significantly changed with experimental variables (CP:SA ratio, medium, and time) and were in good correlation with drug release. Conclusion: Matrix tablets based on CP and SA form a potentially useful versatile system for pH-independent controlled drug release.  相似文献   

20.
Abstract

Diclofenac sodium enteric-coated beads were prepared using the conventional pan coating technique. Eudragit L100 was used as a pH-dependent release-controlling polymer. The beads were evaluated for their particle size distribution, drug loading efficiency, flowability, in vitro release in 0.1 N HCI (pH 1.2) and phosphate buffer (pH 6.8), and bioavailability in beagle dogs relative to the commercial enteric-coated tablets Voltaren®. The beads showed a narrow particle size distribution in which 83% of the beads were in the range of 1-2 mm. The actual yield of the beads was 90.5% and their drug loading was 92%. The beads released about 8% of the drug during 2 hr of dissolution in 0.1 N HCI, and the commercial tablets released no drug. In phosphate buffer (pH 6.8) both formulations released their drug content in 1 hr. Both formulations are, therefore, in compliance with the USP requirements for release from enteric-coated dosage forms.

The in vivo availability study in six beagle dogs revealed that the formulated enteric-coated beads filled in hard gelatin capsules had a 197.54% bioavailability relative to that of the commercial Voltaren tablets. The tablets showed a significantly lower (p < 0.05) area under curve for 0—8 hr (AUC0-8 hr) of 13.44 ± 15.02 μg hr/ml compared to 26.55 ± 5.19 μg hr/ml for the capsules. The capsules showed a nonsignificantly (p > 0.05) higher peak plasma concentration (Cmax) of 6.77 ± 0.67 μg/ml compared to 5.88 ± 7.38 μg/ml for the tablets. The time to reach peak (Tmax) values were 2 ± 1.48 and 2.25 ± 1.08 hr for the capsules and tablets, respectively. The capsules showed less interdog variability with respect to Cmax (CV% 34.6) and AUC (CV% 19.55) compared to CV% 79.9 and 111.76, respectively, for the commercial tablets  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号