首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To design and develop liquid and solid self-nanoemulsifying drug delivery systems (SNEDDS and S-SNEDDS) of felodipine (FLD) using Box–Behnken design (BBD).

Methods: Solubility study was carried out in various vehicles. Ternary phase diagram was constructed to delineate the boundaries of the nanoemulsion domain. The content of formulation variables, X1 (Acconon E), X2 (Cremophor EL) and X3 (Lutrol E300) were optimized by assessment of 15 formulations (as per BBD) for mean globule sizes in Millipore water (Y1), 0.1?N?HCl (Y2), phosphate buffer (pH 6.4) (Y3); emulsification time (Y4) and T85% (Y5). The responses (Y1–Y5) were evaluated statistically by analysis of variance and response surface plots to obtain optimum points. The optimized formulations were solidified by adsorption to solid carrier technique using Aerosil 200 (AER).

Results and discussion: Transmission electron microscopy images confirmed the spherical shape of globules with the size range concordant with the globule size analysis by dynamic light scattering technique (<60?nm). The surface morphology of S-SNEDDS (before release) by scanning electron microscopy and atomic force microscopy indicated that SNEDDS are adsorbed uniformly on the surface of AER. The dried residue of S-SNEDDS (after release) revealed the presence of nanometric pores vacated by the previously adsorbed SNEDDS onto AER. Differential scanning calorimetry and X-ray powder diffraction studies illustrated the change of FLD from crystalline to amorphous state.

Conclusion: This study indicates that owing to nanosize, SNEDDS and S-SNEDDS of FLD have potential to enhance its absorption and may serve an efficient oral delivery.  相似文献   

2.
Development of self-nanoemulsifying drug delivery systems (SNEDDS) of glimepiride is reported with the aim to achieve its oral delivery. Lauroglycol FCC, Tween-80, and ethanol were used as oil, surfactant, and co-surfactant, respectively as independent variables. The optimized composition of SNEDDS formulation (F1) was 10% v/v Lauroglycol FCC, 45% v/v Tween 80, 45% v/v ethanol, and 0.005% w/v glimepiride. Further, the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, dissolution, and diffusion. Both, liquid and solid-SNEDDS have shown release of more than 90% within 10?min. Results of permeation studies performed on Caco-2 cell showed that optimized SNEDDS exhibited 1.54 times higher drug permeation amount and 0.57 times lower drug excretion amount than that of market tablets at 4?hours (p?p?>?.05, i.e. 0.74). The formulation was found stable with temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline glimepiride was observed in amorphous state in solid SNEDDS when characterized through DSC, PXRD, and FT-IR studies. The study revealed successful formulation of SNEDDS for glimepiride.  相似文献   

3.
Objective: The current investigation is focused on the formulation and in vivo evaluation of optimized solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of amisulpride (AMS) for improving its oral dissolution and bioavailability.

Methods: Liquid SNEDDS (L-SNEDDS) composed of Capryol? 90 (oil), Cremophor® RH40 (surfactant), and Transcutol® HP (co-surfactant) were transformed to solid systems via physical adsorption onto magnesium aluminometasilicate (Neusilin US2). Micromeretic studies and solid-state characterization of formulated S-SNEDDS were carried out, followed by tableting, tablet evaluation, and pharmacokinetic studies in rabbits.

Results: Micromeretic properties and solid-state characterization proved satisfactory flow properties with AMS present in a completely amorphous state. Formulated self-nanoemulsifying tablets revealed significant improvement in AMS dissolution compared with either directly compressed or commercial AMS tablets. In vivo pharmacokinetic study in rabbits emphasized significant improvements in tmax, AUC(0–12), and AUC(0–∞) at p?<?.05 with 1.26-folds improvement in relative bioavailability from the optimized self-nanoemulsifying tablets compared with the commercial product.

Conclusions: S-SNEDDS can be a very useful approach for providing patient acceptable dosage forms with improved oral dissolution and biovailability.  相似文献   

4.
5.
Objective: To develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble drug, glibenclamide (GBD). Methods: Solubility of GBD was determined in various vehicles. Phase diagrams were constructed to identify efficient self-emulsification region using oils, surfactants, and cosurfactants in aqueous environment. Formulations were assessed for drug content, spectroscopic clarity, emulsification time, contact angle, zeta potential, particle size, and dissolution studies. On the basis of similarity and dissimilarity of particle size distribution, formulations were further characterized using principal component analysis and agglomerative hierarchy cluster analysis. Results: Among the formulations prepared and evaluated, optimized formulation showed mean particle size between 15.65 and 32.70 nm after 24 hour postdilution in various media. Dilution volume had no significant effect on particle size. Transmission electron microscopy of these formulations confirmed the spherical shape of globules with no signs of coalescence of globules and precipitation of drug. The relevance of difference in t50% and percent dissolution efficiency were evaluated statistically by two-way ANOVA. Infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction studies indicated compatibility between drug, oil, and surfactants. Conclusions: The results of this study indicate that the self-nanoemulsifying drug delivery system of GBD, owing to nanosize, has potential to enhance its absorption and without interaction or incompatibility between the ingredients.  相似文献   

6.
Objective: The aim of this study was the preparation of a self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin.

Significance: Preparation of hydrophobic complexes between heparin as the hydrophilic macromolecule and cationic polymer of β-cyclodextrin (CPβCD) was considered for preparation of orally administered SNEDDS in which the drug incorporated in internal oil phase of O/W nano-droplets.

Methods: Hydrophobic complexes of heparin-CPβCD were prepared by electrostatic interaction. The lipophilic feature of complexes was characterized by determining their partition co-efficients. SNEDDS prototypes were prepared by mixing liquid paraffin, Tween 80, propylene glycol and ethanol, diluted 1:100 in an aqueous medium. Central composite response surface methodology was applied for statistical optimization. Independent variables were the amount of liquid paraffin and the amount of Tween 80, while responses were size and poly dispersity index (PdI). Optimized SNEDDS were studied morphologically using transmission electron microscopy (TEM). In vitro release of heparin was studied in the simulated gastric and simulated intestinal media.

Results: The data revealed that in molar ratio 1:3 (heparin:CPβCD), the n-octanol recovery was maximized and reached 67.6?±?11.86%. Size, PdI, zeta potential, EE% in gastric medium and EE% in intestinal medium for optimized nano-droplets were reported as 307?±?30.51?nm, 0.236?±?0.02,?+2.1?±?0.66?mV, 90.2?±?0.04 and 96.1?±?0.73%, respectively. Microscopic images revealed spherical nano-droplets. The obtained data revealed no burst release of heparin from nano-droplets.

Conclusions: The obtained results indicate that SNEDDS could be regarded as a good candidate for oral delivery of heparin as the hydrophilic macromolecule.  相似文献   

7.
The objectives of present study were to understand the effect of formulation variables of self-nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin (RSV). Box-Behnken design in conjunction with desirability function was used to evaluate the main effect, interaction effect and quadratic effect of independent formulation variables that included amounts of Acconon 200 E6, Cremophor RH40, and Lipoxol 300. For a better understanding of the selected variables for the optimal performance of RSV SNEDDS, the models were presented as three-dimensional response surface graphs. A fresh batch of optimized formulations and were prepared with optimized levels of the independent variables to yield dependent variables (Y1–Y6) values that were remarkably close to the predicted values. Drug excipient compatibility studies using the Fourier transform infrared spectroscopy, differential scanning calorimeter and x-ray diffraction indicated the absence of any incompatibility between RSV and selected excipients. The transmission electron microscopy of selected optimized SNEDDS of RSV showed the spherical shape of globules with no signs of coalescence and precipitation of RSV. The study demonstrates the use of Box-Behnken design for the preparation of RSV SNEDDS. The desirable goals can be obtained by systematic formulation approach in minimum possible time.  相似文献   

8.
Novel core-shell dual-mesoporous silica nanoparticles (DMSN) were successfully prepared as a carrier in order to improve the dissolution of fenofibrate and obtain an oral highly bioavailable controlled-release drug delivery system using the osmotic pump technology. Fenofibrate was loaded into DMSN by an adsorption method. The solid state properties of fenofibrate in DMSN, before and after drug loading, were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption analysis (BET), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). In vitro release tests showed that DMSN increased the dissolution rate of fenofibrate and produced zero-order release in push–pull osmotic pump tablets (OPT). The relative bioavailability of OPT was 186.9% in comparison with the commercial reference product. In summary, osmotic pump technology in combination with solid dispersion technology involving nanometer materials is a promising way for achieving the oral delivery of poorly water-soluble drugs.  相似文献   

9.
In this investigation, multivariate design approach was employed to develop self-nanoemulsifying drug delivery system (SNEDDS) of loratadine and to exploit its potential for intestinal permeability. Drug solubility was determined in various vehicles and existence of self-nanoemulsifying region was evaluated by phase diagram studies. The influence of formulation variables X1 (Capmul MCM C8) and X2 (Solutol HS15) on SNEDDS was assessed for mean globule sizes in different media (Y1Y3), emulsification time (Y4) and drug-release parameters (Y5Y6), to improve quality attributes of SNEDDS. Significant models were generated, statistically analyzed by analysis of variance and validated using the residual and leverage plots. The interaction, contour and response plots explicitly demonstrated the influence of one factor on the other and displayed trend of factor-effect on responses. The pH-independent optimized formulation was obtained with appreciable global desirability (0.9266). The strenuous act of determining emulsification time is innovatively replaced by the use of oil-soluble dye to produce visibly distinct globules that otherwise may be deceiving. TEM images displayed non-aggregated state of spherical globules (size?ex vivo permeation study using confocal laser scanning microscopy indicate strong potential of rhodamine 123-loaded loratadine-SNEDDS to inhibit P-gp efflux and facilitate intestinal permeation. To conclude, the effectiveness of design yields a stable optimized SNEDDS with enhanced permeation potential, which is expected to improve oral bioavailability of loratadine.  相似文献   

10.
Single non-ionic surfactant based self-nanoemulsifying drug delivery system (SNEDDS) was formulated and characterised for poor water soluble drug, Atorvastatin calcium. Capmul MCM oil showing highest solubility for Atorvastatin calcium was selected as oil phase. Self-nanoemulsifying capacity of Cremophor RH 40, Cremophor EL, Tween 20, Tween 60, Tween 80 and Labrasol were tested for the selected oil. In vitro dissolution studies were performed and were characterized by t85% and dissolution efficiency (DE). Cytotoxicity of the formulations and permeation enhancement of the drug across caco-2 cell monolayer was assessed. Capmul MCM was found to be better nanoemulsified in decreasing order of Cremophor RH 40 > Cremophor EL > Tween 20 > Tween 60 > Tween 80. Values of droplet size (range 11–83 nm), polydispersity index (range 0.07–0.65); zeta potential (range ?3.97 to ?19.0) and cloud point (60–85°C) before and after drug loading proves the uniformity and stability of the formulations. SNEDDS formulated with Tween 20 surfactant showed enhanced dissolution with t85% and DE values at 10 min and 78.70, respectively. None of the formulation showed cytotoxicity at the concentration tested. Tween 20 based SNEDDS enhanced permeation of the drug as compared with pure drug across cell lines. It can be concluded that SNEDDS can be formulated by using single non-ionic surfactant system for enhance dissolution and absorption of poorly soluble drug, Atorvastatin calcium.  相似文献   

11.
The aim of the present study was to improve the dissolution and flow properties of lurasidone hydrochloride (LH) by solid dispersion adsorbate (SDA) technique. Solid dispersions (SDs) of LH were prepared by fusion method using Poloxamer P188. The melt dispersion was adsorbed onto the porous carrier Florite (calcium silicate). A 32 factorial design was employed to quantify the effect of two independent variables, namely ratio of carrier (Poloxamer 188) and LH in SD and ratio of adsorbent (Florite) to SD. SDA granules of LH were studied for flow properties and characterized using differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. Tablets of optimized composition of SDA granules (equivalent to 20?mg of drug) and plain tablets were prepared by direct compression method. The dissolution studies were carried out in Mcllvaine buffer (pH 3.8) as per USFDA guidelines and characterized for parameters such as percent dissolution efficiency, t50, and Q30. Tablets prepared from SDA granules showed almost four-fold increase in cumulative percentage drug release as compared to tablets prepared from plain LH. The value of dissolution efficiency was enhanced from 49.60% for plain tablets to 94.15% for SDA tablets. SDA granules did not show any change in drug release and X-ray diffraction pattern after storage at 40?°C/75% of RH for 3?months, which confirms that Florite prevented conversion of drug from amorphous form to crystalline form improving physical stability of the amorphous state of LH.  相似文献   

12.
Objective: The aim of this study was to improve the oral bioavailability of spironolactone (SP).

Method: SP was adsorbed on the fumed silica using supercritical CO2 (scCO2) technology and further compressed into tablets. The morphology was observed by scanning electron microscopy (SEM), and the crystalline form was investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The dissolution test was performed in water, 0.1?M HCl solution, pH 4.5 acetate buffers and pH 6.8 phosphate buffers using the paddle method. The pharmacokinetics was undertaken in six dogs in a crossover fashion.

Results: SP was successfully prepared into tablets and presented in amorphous state. SP-silica scCO2 tablets displayed higher dissolution profiles than SP-silica physical mixtures tablets in different media. The AUC0–t and Cmax of SP-silica supercritical CO2 was 1.61- and 1.52-fold greater than those of SP-silica physical mixtures (p?Conclusion: It is a promising method in improving dissolution and bioavailability by adsorbing SP, a poorly soluble drug, on the fumed silica using rapid expansion of supercritical solutions.  相似文献   

13.
Context: The clinical applications of cilostazol (CLZ) are limited by its low aqueous solubility (<5?µg/ml) and high biovariability.

Objective: The aim of this study was to enhance the solubility of CLZ by forming inclusion complexes (ICs) with beta cyclodextrin (β-CD) and formulating them into oral disintegrating tablets.

Methods: Phase solubility study of CLZ with β-CD was performed in water. Job’s plot was constructed to determine the stoichiometry of ICs. ICs, prepared by spray-drying technique, were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, hot stage microscopy, powder X-ray diffraction and nuclear magnetic resonance. Molecular modeling studies were performed to understand the mode of interaction of CLZ with β-CD. The formulation process was undertaken using a reproducible design of experiment generated model, attained by variation of diluents and disintegrants at three levels. Tablets were evaluated for drug content, hardness, friability, disintegration time (DT), wetting time (WT) and dissolution profiles.

Results and discussion: Phase solubility studies suggested an AL type curve with stability constant (Ks) of 922.52?M?1. Job’s plot revealed 1:2 stoichiometry. All analytical techniques confirmed inclusion complexation. Molecular modeling revealed dispersive van der Waals interaction energy as a major contributor for stabilization of complex. The spray-dried complexes showed higher solubility and faster dissolution compared to plain CLZ. The optimized formulation showed DT of 11.1?±?0.8?s, WT of 8.7?±?0.9?s and almost complete dissolution of CLZ in 15?min.

Conclusion: The prepared tablets with low DT and fast dissolution will prove to be a promising drug delivery system with improved bioavailability and better patient compliance.  相似文献   

14.
ABSTRACT

The aim of this work was to develop a ketoprofen tablet which dissolve-rapidly in the mouth, therefore, needing not be swallowed. The solubility and dissolution rate of poorly water-soluble ketoprofen was improved by preparing a lyophilized tablet (LT) of ketoprofen using freeze-drying technique. The LT was prepared by dispersing the drug in an aqueous solution of highly water-soluble carrier materials consisting of gelatin, glycine, and sorbitol. The mixture was dosed into the pockets of blister packs and then was subjected to freezing and lyophilization. The saturation solubility and dissolution characteristics of ketoprofen from the LT were investigated and compared to the plain drug and the physical mixture (PM). Results obtained showed that the increase in solubility of ketoprofen from LT matrix, nearly three times greater than the solubility of the plain drug, was due to supersaturation generated by amorphous form of the drug. Results obtained from dissolution studies showed that LT of ketoprofen significantly improved the dissolution rate of the drug compared with the PM and the plain drug. More than 95% of ketoprofen in LT dissolved within 5 min compared to only 45% of ketoprofen plain drug dissolved during 60 min. Initial dissolution rate of ketoprofen in LT was almost tenfold higher than that of ketoprofen powder alone. Crystalline state evaluation of ketoprofen in LT was conducted through differential scanning calorimetry (DCS) and x-ray powder diffraction (XRPD) to denote eventual transformation to amorphous state during the process. Scanning electron microscopic (SEM) analysis was performed and results suggest reduction in ketoprofen particle size.  相似文献   

15.
Morin hydrate (MH) is a promising flavonoid with diverse biological activities; unfortunately, it finds limited clinical application due to its low water solubility. Herein, we developed a liquid self nano-emulsifying drug delivery system (l-SNEDDS) employing Labrafil M 1994 CS, Cremophor RH 40, and Transcutol HP. The l-SNEDDS has been solidified by physical adsorption using inert carriers, i.e., Neusilin US2 and Aerosil 200. The S-SNEDDS was thoroughly investigated for flow function (FF), effective angle of wall friction (EAWF), and effective angle of internal friction (EAIF) employing a powder flow tester (PFT). The solid-state characterizations of S-SNEDDS were performed using FTIR, DSC, PXRD, and SEM. Further, in vitro dissolution, in vivo pharmacokinetic, and shelf life estimation were performed on selected SOF-2 formulation. The SOF-2 reveals good emulsifying ability, particle size (52 ± 4.25 nm), and PDI (0.133 ± 0.06). The FF and Jenike’s classification suggests the “free-flowing” nature of S-SNEDDS prepared using Neusilin US2. Further, S-SNEDDS prepared using Neusilin US2 showed a low friction angle, i.e., EAWF and EAIF, than Aerosil 200, therefore, a better flowability. The solid-state characterization of SOF-2 demonstrated the transition of MH from crystalline to amorphous state and good compatibility between MH and Neusilin US2. Further, SOF-2 showed more dissolution than pure MH and subsequently 2.97-fold increments in its oral bioavailability. Moreover, the shelf life of SOF-2 was reported to be 27.57 months, suggesting its excellent physical and chemical stability. In brief, solidifying l-SNEDDS and investigating flow behaviors by PFT could find attention in the pharmaceutical and food industry for commercial purposes.  相似文献   

16.
In this study, furbiprofen/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes were prepared to improve the drug dissolution and facilitate its application in hydrophilic gels. Inclusion complexes were prepared using a supercritical fluid processing and a conventional optimized co-lypholization method was employed as a reference. The entrapment efficacy and drug loading of both methods were investigated. Evaluation of drug dissolution enhancement was conducted in deionized water as well as buffer solutions of different pH. Carbopol 940 gels of both flurbiprofen and flurbiprofen/HPβCD inclusion complexes, with or without penetration enhancers, were prepared and percutaneous permeation studies were performed using rat abdominal skin samples. Formation of flurbiprofen/HPβCD inclusion complexes was confirmed by Fourier transform-infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. The results obtained showed that SCF processing produced a higher EE (81.91?±?1.54%) and DL (6.96?±?0.17%) compared with OCL with values of 69.11?±?2.23% and 4.00?±?1.01%, respectively. A marked instantaneous release of flurbiprofen/HPβCD inclusion complexes prepared by SCF processing (103.04?±?2.66% cumulative release within 5?min, a 10-fold increase in comparison with flurbiprofen alone) was observed. In addition, this improvement in dissolution was shown to be pH-independent (the percentage cumulative release at pH 1.2, 4.5, 6.8 and 7.4 at 5?min was 95.19?±?1.71, 101.75?±?1.44, 105.37?±?4.58 and 96.84?±?0.56, respectively). Percutaneous permeability of flurbiprofen-in-HPβCD-in-gels could be significantly accelerated by turpentine oil and was related to the water content in the system. An in vivo pharmacokinetic study showed a 2-fold increase in Cmax and a shortened Tmax as well as a comparable relative bioavailability when compared with the commercial flurbiprofen Cataplasms (Zepolas®). With their superior dissolution, these flurbiprofen/HPβCD inclusion complexes prepared by SCF processing could provide improved applications for flurbiprofen.  相似文献   

17.
Abstract

Background: Adapalene is a widely used topical anti-acne drug; however, it has many side effects. Liposomal drug delivery can play a major role by targeting delivery to pilosebaceous units, reducing side effects and offering better patient compliance.

Objective: To prepare and evaluate adapalene-encapsulated liposomes for their physiochemical and skin permeation properties.

Methods: A liposomal formulation of adapalene was prepared by the film hydration method and characterized for shape, size, polydispersity index (PDI), encapsulation efficiency and thermal behavior by techniques such as Zetasizer®, differential scanning calorimetry and transmission electron microscopy. Stability of the liposomes was evaluated for three months at different storage conditions. In vitro skin permeation studies and confocal laser microscopy were performed to evaluate adapalene permeation in pig ear skin and hair follicles.

Results: The optimized process and formulation parameters resulted in homogeneous population of liposomes with a diameter of 86.66?±?3.5?nm in diameter and encapsulation efficiency of 97.01?±?1.84% w/w. In vitro permeation studies indicated liposomal formulation delivered more drug (6.72?±?0.83?μg/cm2) in hair follicles than gel (3.33?±?0.26?μg/cm2) and drug solution (1.62?±?0.054?μg/cm2). Drug concentration delivered to the skin layers was also enhanced compared to other two formulations. Confocal microscopy images confirmed drug penetration in the hair follicles when delivered using the liposomal formulation.

Conclusion: Adapalene was efficiently encapsulated in liposomes and led to enhanced delivery in hair follicles, the desired target site for acne.  相似文献   

18.
Purpose: For large scale preparation of stabilized itraconazole (ITZ) nanodispersions to improve the dissolution rate.

Method: High-gravity technique was employed to produce ITZ nanodispersions.

Results: Stabilizer had a significant effect on the stability of drug nanoparticles. Hydroxypropylmethylcellulose was found to be the most effective stabilizer to prevent drug nanoparticles from aggregation. ITZ nanoparticles with an average size of 210?nm were obtained. Mannitol was the suitable carrier matrix for improving the flowability and the dissolution rate of ITZ nanodispersion. The effects of operating variables on the particle size distribution were investigated in detail. The stability of ITZ nanodispersions was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and in vitro dissolution studies. After 6 months storage, the nanodispersion showed unchanged particles size, morphology, crystal state, chemical structure, and dissolution. In vitro dissolution rate indicated that the nanodispersion could significantly enhance the dissolution rate when compared to the commercial available Sporanox capsules. The nanodispersion achieved 70% of drug dissolution in 10?min, whereas the Sporanox capsules only dissolved 20% during the same period.

Conclusion: This study demonstrated that high-gravity technique is a promising method for large scale production of nanodispersions to enhance the dissolution rate of poorly water-soluble drugs.  相似文献   

19.
The aim of the present study was to improve the dissolution, permeability and therefore oral bioavailability of the fexofenadine hydrochloride (FEX), by preparing lipid surfactant based dispersions using self-emulsifying carriers, i.e. Gelucire 44/14 (GLC) and d-α-tocopheryl polyethylene glycol 1000 succinate (Vitamin E TPGS or TPGS). The reprecipitation studies were conducted using these carriers to evaluate inhibition of reprecipitation by maintaining super saturation state. The aqueous solubility of the FEX was increased linearly with increasing GLC, TPGS concentrations as verified by the phase solubility studies. The dispersions of FEX were prepared in different drug/GLC (GD) and drug/TPGS (TD) ratios by melt method and evaluated. The prepared dispersions showed improved dissolution rate in distilled water as dissolution media and highest dissolution rate was achieved with dispersions prepared using TPGS. The solid state characterization was carried by differential scanning calorimetry and scanning electron microscopy indicated reduced crystallinity of the drug. Fourier transform infrared spectroscopy revealed the compatibility of drug with carriers. The ex vivo permeation studies conducted using intestinal gut sac technique, resulted in reduced efflux of the drug by inhibiting intestinal P-glycoprotein from the dispersions. The in situ perfusion studies and in vivo pharmacokinetic studies in male wistar rats showed improved absorption and oral bioavailability from the prepared dispersions as compared to pure drug.  相似文献   

20.
Context: Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement.

Objective: The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen.

Material and methods: Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained.

Results: The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol?, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen.

Conclusion: This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号