首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
When fabricated by thermal exfoliation, graphene can be covalently functionalized more easily by applying a direct ring-opening reaction between the residual epoxide functional groups on the graphene and the amine-bearing molecules. Investigation by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) all confirm that these molecules were covalently grafted to the surface of graphene. The resulting dispersion in an organic solvent demonstrated a long-term homogeneous stability of the products. Furthermore, comparison with traditional free radical functionalization shows the extent of the defects characterized by TEM and Raman spectroscopy and reveals that direct functionalization enables graphene to be covalently functionalized on the surface without causing any further damage to the surface structure. Thermogravmetric analysis (TGA) shows that the nondestroyed graphene structure provides greater thermal stability not only for the grafted molecules but also, more importantly, for the graphene itself, compared to the free-radical grafting method.  相似文献   

2.
Park KH  Kim BH  Song SH  Kwon J  Kong BS  Kang K  Jeon S 《Nano letters》2012,12(6):2871-2876
The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (~930 Ω/□ at ~75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.  相似文献   

3.
We have demonstrated a fast, versatile, and scalable approach to synthesize high-quality few layer graphene sheets with low defect ratio and high crystallinity produced from exfoliation of graphite flakes in DMF by using probe sonication. The effect of sonication time on degree of exfoliation and number of graphene layers has been fully investigated. The degree of exfoliation of graphene sheets as a function of sonication time has been successfully analyzed by XRD, UV-Vis spectroscopy, TEM, and BET studies. The morphological changes at different sonication times have also been observed by SEM. A structural and defect characterization of graphene sheets has been discussed in detail by Raman spectroscopic technique. The shift in position of 2D Raman band and its de-convolution provided information about formation of multi to few layer graphene sheets with sonication. Moreover, Raman results are highly consistent with TEM studies as per number of graphene layers is concerned.  相似文献   

4.
Functionalization and dispersion of graphene sheets are of crucial importance for their end applications. Chemical functionalization of graphene enables this material to be processed by solvent-assisted techniques, such as layer-by-layer assembly, spin-coating, and filtration. It also prevents the agglomeration of single layer graphene during reduction and maintains the inherent properties of graphene. Therefore, a detailed review on the advances of chemical functionalization of graphene is presented. Synthesis and characterization of graphene have also been reviewed in the current article. The functionalization of graphene can be performed by covalent and noncovalent modification techniques. In both cases, surface modification of graphene oxide followed by reduction has been carried out to obtain functionalized graphene. It has been found that both the covalent and noncovalent modification techniques are very effective in the preparation of processable graphene. However, the electrical conductivity of the functionalized graphene has been observed to decrease significantly compared to pure graphene. Moreover, the surface area of the functionalized graphene prepared by covalent and non-covalent techniques decreases significantly due to the destructive chemical oxidation of flake graphite followed by sonication, functionalization and chemical reduction. In order to overcome these problems, several studies have been reported on the preparation of functionalized graphene directly from graphite (one-step process). In all these cases, surface modification of graphene can prevent agglomeration and facilitates the formation of stable dispersions. Surface modified graphene can be used for the fabrication of polymer nanocomposites, super-capacitor devices, drug delivery system, solar cells, memory devices, transistor device, biosensor, etc.  相似文献   

5.
A novel folate-decorated and graphene mediated drug delivery system was prepared that involves uniquely combining graphene oxide (GO) with anticancer drug for controlled drug release. The nanocarrier system was synthesized by attaching doxorubicin (DOX) to graphene oxide via strong π–π stacking interaction, followed by encapsulation of graphene oxide with folic acid conjugated chitosan. The π–π stacking interaction, simplified as a non-covalent type of functionalization, enables high drug loading and subsequent controlled release of the drug. The encapsulated graphene oxide enhanced the stability of the nanocarrier system in aqueous medium because of the hydrophilicity and cationic nature of chitosan. The loading and release of DOX indicated strong pH dependence and imply hydrogen-bonding interaction between graphene oxide and DOX. The proposed strategy is advantageous in terms of targeted drug delivery and has high potential to address the current challenges in drug delivery. Thus, the prepared nanohybrid system offers a novel formulation that combines the unique properties of a biodegradable material, chitosan, and graphene oxide for biomedical applications.  相似文献   

6.
We present a fabrication method producing large and flat graphene flakes that have a few layers down to a single layer based on substrate bonding of a thick sample of highly oriented pyrolytic graphite (HOPG), followed by its controlled exfoliation down to the few to single graphene atomic layers. As the graphite underlayer is intimately bonded to the substrate during the exfoliation process, the obtained graphene flakes are remarkably large and flat and present very few folds and pleats. The high occurrence of single-layered graphene sheets being tens of microns wide in lateral dimensions is assessed by complementary probes including spatially resolved micro-Raman spectroscopy, atomic force microscopy and electrostatic force microscopy. This versatile method opens the way for deposition of graphene on any substrates, including flexible ones.  相似文献   

7.
A stepwise surface functionalization procedure, based on hybrid covalent and non-covalent approach is herein proposed to anchor tetra-anionic meso-tetrakis(4-sulfonatophenyl)porphyrin on ZnO nanorods. Carboxyalkylphosphonic acids have been proven effective to form stable self-assembled monolayers through the surface grafting of –PO3H2 headgroups. The exposed carboxylic functionalities are suitable for the successful grafting of cationic poly-l-lysine that drives, in water, the non-covalent anchoring of the anionic porphyrin. A stepwise surface characterization, provided by X-ray photoelectron spectroscopy, elucidates the multilayers deposition and surface composition after each process step, thus, giving interesting insights on the chemical speciation of the exposed functionalities. UV–vis spectroscopy confirms the role of ZnO morphology to increase the porphyrin loading onto the investigated surfaces. The proposed approach is effective to achieve deposition of anionic porphyrins on ZnO nanostructures and combines the robustness of covalent functionalization with the versatility and full reversibility of the non-covalent strategies.  相似文献   

8.
Ribonucleic acid (RNA) is proposed as a nonionic surfactant for the efficient exfoliation of graphite in thin flakes of few-layer graphene and the subsequent preparation of transparent and conducting thin films. Parameters such as the type of RNA used and the size of starting graphite flakes are demonstrated to be essential for obtaining RNA-graphene thin films of good quality. A model explaining the exfoliation of graphene by RNA in water is suggested. A number of post- and predeposition treatments (including thermal annealing, functionalization of the films, and the preoxidation of graphite) are critical to improve the performance of graphene-RNA nanocomposites as transparent conductors. The study establishes an ideal link between RNA and graphene, the fundamental building blocks for nanobiology and carbon-based nanotechnology.  相似文献   

9.
Graphene is mostly grown from methane on copper foils at a high temperature about 1000°C. In this research, a commercial ethylene-acetylene-ethane mixture was used as a clean precursor for graphene synthesis on nickel foils in a chemical vapor deposition reactor at 750°C. Furthermore, controlled functionalization of graphene sheets was achieved via hydrothermal oxidation at moderate pressure and temperature using nitric acid. Broadened 2D band and G band frequencies in Raman spectra indicated that pristine graphene (PG) was of high quality with low defects. X-ray diffraction results confirmed that PG has five layers. Transmission electron microscopy and N2 adsorption-desorption analyses affirmed that the graphene is of a good quality, large surface area (562 m2/g) and small pore size. Fourier transform infrared spectroscopy confirmed functionalization process performance. Thermogravimetric analysis affirmed that the thermal stability of PG was drastically decreased after the functionalization process.  相似文献   

10.
《Advanced Powder Technology》2020,31(5):2072-2078
This work is aimed to identify the structure of the graphene-based particles (GPs) from old coconut shell as the raw material after the mechanical exfoliation processes. The burnt coconut shell was at first heated at 400 °C for 5 h in ambient air. The sample was then stirred in an acid solution (HCl) and then continued by ultrasonication and centrifugation. The exfoliated GPs were characterized by x-ray diffraction (XRD), particle size analyzer (PSA), Fourier-transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), Raman spectroscopy, and synchrotron wide and small angle x-ray scattering (WAXS and SAXS, respectively). The XRD and WAXS analyses show Bragg peaks corresponding to a pure phase of reduced graphene oxide (rGO). PSA, SEM/TEM, AFM, and Raman analyses show that the use of HCl-assist in the solution during the exfoliation process has successfully reduced particle size of the obtained GPs. SAXS pattern of the exfoliated GPs using the assist of HCl, confirmed by TEM and AFM images, results in the specific particle sizes of between 1.42 and 4.99 nm. The present mechanical exfoliation technique has successfully been applied to obtain several nanometers of GPs and provides an alternative of simple synthesis of biomass – based graphene products.  相似文献   

11.
Ultra-fast synthesis of graphene has been reported by microwave assisted graphene oxide reduction. In this article, the graphene oxide was initially dried above room temperature. The initial heat treatment of graphene oxide demonstrates a distinct improvement of exfoliation rate of graphene sheets. This method provides an efficient way for mass production of high quality graphene sheets. Raman spectroscopy, scanning electron microscopy, and X-ray diffraction techniques has been used to characterize reduced graphene sheets. The quality of reduced graphene was found to be affected by the initial drying temperature of graphite oxide.  相似文献   

12.
Non-covalently modified graphene nanosheets were prepared by reduction graphene oxide with hydrazine hydrate and simultaneous non-covalent functionalization via 1-allyl-methylimidazolium chloride (AmimCl) ionic liquid. Atomic force microscopy revealed that AmimCl ionic liquid modified graphene (IL-G) was well-dispersed in a single exfoliation with a thickness of around 0.96 nm in DMF. Subsequently, the prepared IL-G nanosheets were incorporated into polyurethane (PU) to fabricate IL-G/PU nanocomposites by solution blending. X-ray diffraction disclosed an exfoliated morphology of IL-G nanosheets dispersed in the PU matrix, while the fractured morphology of the IL-G/PU nanocomposites showed that IL-G nanosheets presented a wrinkled morphology when dispersed in the matrix. Both techniques revealed homogeneous dispersion and good compatibility of IL-G nanosheets with PU matrix, indicating the existence of interfacial interactions. At 0.608 wt% loadings of IL-G nanosheets, the tensile strength and storage modulus of the composites were increased by 68.5 and 81.1 %, respectively. High thermal properties were also achieved at a low loading of IL-G nanosheets. An approximately 40 °C improvement in temperature of 5 % weight loss and 34 % increase in thermal conductivity were obtained at just 0.608 wt% loading of IL-G nanosheets.  相似文献   

13.
High specific surface area graphene nanosheets have been obtained from graphite oxide by using an effective modified exfoliation method under vacuum, the exfoliation temperature (135 degrees C) is much lower than that conventionally applied (1050 degrees C) to obtain monolayer graphene sheets via rapid thermal shock. These products have fluffy and highly porous structure and with a lateral size typically of a few micrometers. Transmission electron microscopy (TEM) observation shows that it looks like a wrinkled transparent ultrathin film consisting of single or few-layer graphene sheets, and their Brunauer-Emmett-Teller surface area is as large as 750 m2/g. Simultaneously, X-ray photoelectron spectroscopy analysis revealed that considerable amount of oxygen-containing groups (C/O ratio, 5:1) retained on the graphene sheets after exfoliation process, which would provide convenience for further modification of the surface properties and chemistry of graphene sheets. This work offers a facile and scalable approach to fabricate graphene oxide and opens up a new vista of various potential applications electronics and composite materials.  相似文献   

14.
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile, using expanded graphite (EG) as the starting material. It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene. The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%–12 wt%. By means of centrifugation at 2000 rpm for 90 min, monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifier. Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any significant structural defects.   相似文献   

15.
An easy method of producing graphene sheets with high quality from mesocarbon microbeads (MCMBs) is demonstrated using oxidation, rapid expansion and ultrasonic treatment. Single layer graphene sheets have been successfully prepared from MCMBs through thermal exfoliation. The structure of the graphene sheets was investigated by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. MCMBs expanded mainly along the c-axis and formed worm-like ellipses from the original regular spherules. Exfoliation continued with the fragmentation of the pieces and produced delamination of the graphene sheets. MCMBs can be an excellent starting material for producing high quality graphene sheets with high yields, becoming an attractive raw material for industrial up-scale.  相似文献   

16.
A facile and high‐yield approach to the preparation of few‐layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage‐1 H2SO4‐graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film‐forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24 500 S m?1). Three‐dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self‐sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g?1 at a current density of 0.5 A g?1, retaining 90% capacitance after 1000 cycles.  相似文献   

17.
Two-dimensional carbon-based nanomaterials, including graphene oxide and graphene, are potential candidates for biomedical applications such as sensors, cell labeling, bacterial inhibition, and drug delivery. Herein, we explore the biocompatibility of graphene-related materials with controlled physical and chemical properties. The size and extent of exfoliation of graphene oxide sheets was varied by sonication intensity and time. Graphene sheets were obtained from graphene oxide by a simple (hydrazine-free) hydrothermal route. The particle size, morphology, exfoliation extent, oxygen content, and surface charge of graphene oxide and graphene were characterized by wide-angle powder X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and zeta-potential. One method of toxicity assessment was based on measurement of the efflux of hemoglobin from suspended red blood cells. At the smallest size, graphene oxide showed the greatest hemolytic activity, whereas aggregated graphene sheets exhibited the lowest hemolytic activity. Coating graphene oxide with chitosan nearly eliminated hemolytic activity. Together, these results demonstrate that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells. In addition, the cytotoxicity of graphene oxide and graphene sheets was investigated by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. However, appropriate alternate assessments, using the water-soluble tetrazolium salt (WST-8), trypan blue exclusion, and reactive oxygen species assay reveal that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e., whether or not aggregation occurs) and mode of interaction with cells (i.e., suspension versus adherent cell types).  相似文献   

18.
The functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non‐covalent zwitterion functionalization. The results show that a surfactant with electron‐deficient carbon atoms in its backbone structure and large π–π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions. Experimental and computational studies confirm that perylene diimide amino N‐oxide (PDI–NO) allows efficient functionalization and pH‐independent dispersion of graphene enabled by hydration repulsion effects induced by PDI–NO. The PDI–NO functionalized graphene is successfully used in the oxygen evolution reaction as an electron mediator for boosting the electrocatalytic activity of a Ru‐based polyoxometalate catalyst in an acidic medium. The proposed strategy is expected to bring significant advances in producing highly dispersible graphene in aqueous medium with pH‐independent stability, thus broadening the application range of graphene.  相似文献   

19.
Graphene-based engine oil nanofluids for tribological applications   总被引:1,自引:0,他引:1  
Ultrathin graphene (UG) has been prepared by exfoliation of graphite oxide by a novel technique based on focused solar radiation. Graphene based engine oil nanofluids have been prepared and their frictional characteristics (FC), antiwear (AW), and extreme pressure (EP) properties have been evaluated. The improvement in FC, AW, and EP properties of nanofluids is respectively by 80, 33, and 40% compared with base oil. The enhancement can be attributed to the nanobearing mechanism of graphene in engine oil and ultimate mechanical strength of graphene.  相似文献   

20.
Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof‐of‐concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution‐processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene‐based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high‐quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom‐up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene‐based nanomaterials and their applications in sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号