首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductor nanowires have attracted considerable recent interest due to their unique properties, including their highly anisotropic geometry, large surface-to-volume ratio, and carrier and photon confinement. Currently, tremendous efforts are devoted to the rational synthesis of advanced nanowire heterostructures. Yet, if functional devices are to be made from these materials, precise control over their composition, structure, morphology, and dopant concentration must be achieved. Their fundamental properties must also be carefully investigated since the presence of a large surface and interfacial area in nanowires can profoundly alter their performance. In this article, the progress, promise, and challenges in the area of nanowire heterostructured materials are reviewed, with particular emphasis on the effect of different types of heterointerfaces on device properties.  相似文献   

2.
Lu KC  Wu WW  Ouyang H  Lin YC  Huang Y  Wang CW  Wu ZW  Huang CW  Chen LJ  Tu KN 《Nano letters》2011,11(7):2753-2758
We report the critical effects of oxide on the growth of nanostructures through silicide formation. Under an in situ ultrahigh vacuum transmission electron microscope, it is observed from the conversion of Si nanowires into the metallic PtSi grains epitaxially through controlled reactions between lithographically defined Pt pads and Si nanowires. With oxide, instead of contact area, single crystal PtSi grains start forming either near the center between two adjacent pads or from the ends of Si nanowires, resulting in the heterostructure formation of Si/PtSi/Si. Without oxide, transformation from Si into PtSi begins at the contact area between them, resulting in the heterostructure formation of PtSi/Si/PtSi. The nanowire heterostructures have an atomically sharp interface with epitaxial relationships of Si(20-2)//PtSi(10-1) and Si[111]//PtSi[111]. Additionally, it has been observed that the existence of oxide significantly affects not only the growth position but also the growth behavior and the growth rate by two orders of magnitude. Molecular dynamics simulations have been performed to support our experimental results and the proposed growth mechanisms. In addition to fundamental science, the significance of the study matters for future processing techniques in nanotechnology and related applications as well.  相似文献   

3.
This paper provides a review of the state-of-the-art electronic-structure calculations of semiconductor nanowires. Results obtained using empirical k.p, empirical tight-binding, semi-empirical pseudopotential, and with ab initio methods are compared. For conciseness, we will restrict our detailed discussions to free-standing plain and modulated nanowires. Connections to relevant experimental data, particularly band gaps and polarization anisotropy, will be made since these results depend crucially on the electronic properties. For completeness, a brief review on the synthesis of nanowires is included.  相似文献   

4.
Zhao J  Sun H  Dai S  Wang Y  Zhu J 《Nano letters》2011,11(11):4647-4651
Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.  相似文献   

5.
A number of different families of nanowires which self-assemble on semiconductor surfaces have been identified in recent years. They are particularly interesting from the standpoint of nanoelectronics, which seeks non-lithographic ways of creating interconnects at the nm scale (though possibly for carrying signal rather than current), as well as from the standpoint of traditional materials science and surface science. We survey these families and consider their physical and electronic structure, as well as their formation and reactivity. Particular attention is paid to rare earth nanowires and the Bi nanoline, both of which self-assemble on Si(001).Further information within the topic of this review article, including an up-to-date list of relevant publications, can be found on our Website. The address is:
J. H. G. Owen (Corresponding author)Email:
K. MikiEmail:
D. R. BowlerEmail:
  相似文献   

6.
Cao L  Fan P  Brongersma ML 《Nano letters》2011,11(4):1463-1468
Systems of coupled resonators manifest a myriad of exciting fundamental physical phenomena. Analogous to the synthesis of molecules from single atoms, the construction of photonic molecules from stand-alone optical resonators represents a powerful strategy to realize novel functionalities. The coupling of high quality factor (Q) dielectric and semiconductor microresonators is by now well-understood and chipscale applications are abound. The coupling behavior of low-Q nanometallic structures has also been exploited to realize high-performance plasmonic devices and metamaterials. Although dense arrays of semiconductor nanoparticles and nanowires (NWs) find increasing use in optoelectronic devices, their photonic coupling has remained largely unexplored. These high refractive index nano-objects can serve as low-Q optical antennas that can effectively receive and broadcast light. We demonstrate that the broad band antenna response of a pair of NWs can be tuned significantly by engineering their optical coupling and develop an intuitive coupled-mode theory to explain our observations.  相似文献   

7.
Jung M  Song W  Sung Lee J  Kim N  Kim J  Park J  Lee H  Hirakawa K 《Nanotechnology》2008,19(49):495702
We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450?K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.  相似文献   

8.
Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.  相似文献   

9.
10.
We demonstrate the three-dimensional composition mapping of a semiconductor nanowire with single-atom sensitivity and subnanometer spatial resolution using atom probe tomography. A new class of atom probe, the local electrode atom probe (LEAP) microscope, was used to map the position of single Au atoms in an InAs nanowire and to image the interface between a Au catalyst and InAs in three dimensions with 0.3-nm resolution. These results establish atom probe tomography as a uniquely powerful tool for analyzing the chemical composition of semiconductor nanostructures.  相似文献   

11.
Reece PJ  Toe WJ  Wang F  Paiman S  Gao Q  Tan HH  Jagadish C 《Nano letters》2011,11(6):2375-2381
We report on the optical trapping characteristics of InP nanowires with dimensions of 30 (±6) nm in diameter and 2-15 μm in length. We describe a method for calibrating the absolute position of individual nanowires relative to the trapping center using synchronous high-speed position sensing and acousto-optic beam switching. Through brownian dynamics we investigate effects of the laser power and polarization on trap stability, as well as length dependence and the effect of simultaneous trapping multiple nanowires.  相似文献   

12.
Zigzag and helical beta-Ga(2)O(3) one-dimensional nanostructures were produced by thermal evaporation of gallium oxide in the presence of gallium nitride. High-resolution TEM analysis indicates that each individual zigzag nanostructure has a periodic arrangement of three distinct blocks: two structurally perfect blocks mirrored with respect to each other on the (002) plane, and one stacking-fault-rich block sandwiched between them. In a zigzag nanostructure, the growth orientation of a beta-Ga(2)O(3) crystal changes alternately in three blocks. The zigzag nanostructure as a whole has the [001] axial direction. In addition to zigzag nanostructures, single-crystalline helical nanowires were also obtained.  相似文献   

13.
Ferromagnetic self-assembled alpha-MnAs quantum dots (QD) were grown epitaxially on metal catalyst-grown InAs nanowires (NW) by chemical vapor deposition. Magnetic force microscopy measurements demonstrated that the QDs are stable, single-domain ferromagnets with T(c) values of approximately 310 K. Single QD switching was demonstrated at fields as low as 60 Oe. The hybrid ferromagnetic/semiconductor QD/NW properties provide a promising basis for the development of nanowire spin-valves and magnetic memory devices.  相似文献   

14.
We investigate resonant transmission and spin filtering in symmetric semiconductor nanowires (SSNs), where Rashba spin-orbit coupling (SOC) is symmetrically distributed by applying external electric field. It is shown that electronic bandgap structure has been formed, and the width of the bandgap can be enlarged by increasing the strength of SOC. Resonant transmission has been found in the electronic bandgap, which is characterized by perfect transmission peak. Interestingly, by introducing a weak magnetic modulation, the transmission spectra of spin-up and spin-down electrons are separated. With increasing the length of the centre segment in the SSN, multiple spin-dependent perfect transmission peaks appear in the bandgap. The resonant energy and the number of modes of resonant transmission therein can be manipulated. Around resonant energy, high spin-polarization is observed, and fully spin-polarized conductance is obtained in this SSN. Our investigations achieve potential applications in spin filters.  相似文献   

15.
Exploring the mass manufacturing aspects of nanostructures can enable the transition from laboratory-based research into a commercial product. Among the several one-dimensional nanostructures, oxide nanomaterials have a wide variety of applications including energy harvesting, photonics and biosensing applications. In this article, mass manufacturing aspects of bottom-up grown silica nanowires on silicon (Si) by metal thin film catalysis have been detailed. The investigation reports on (a) a growth model derived from studying nanowire nucleation as a function of heating time, (b) nanowire growth rate estimation via weight differential of the Si substrate before and after growth, and (c) reusability of the Si substrate for nanowire growth.Silica nanowires were found to grow on Pd coated Si substrate in an open tube furnace at 1100 °C with Ar as a carrier gas and a Si support wafer. Nanowires nucleated following a combination of Vapor Liquid Solid (VLS) and Oxide Assisted Growth (OAG) mechanisms conducive for mass manufacturing. The role of SiO vapor was found to be critical in the growth of the wires. Further, five distinct growth regimes were identified while estimating the growth rate. Experimental observations indicated the non-reusability of the Si substrate after one time growth due to depletion of catalyst.  相似文献   

16.
To fully exploit their full potential, new semiconductor nanowire building blocks with ab initio controlled shapes are desired. However, and despite the great synthetic advances achieved, the ability to control nanowire's geometry has been significantly limited. Here, we demonstrate a simple confinement-guided nanowire growth method that enables to predesign not only the chemical and physical attributes of the synthesized nanowires but also allows a perfect and unlimited control over their geometry. Our method allows the synthesis of semiconductor nanowires in a wide variety of two-dimensional shapes such as any kinked (different turning angles), sinusoidal, linear, and spiral shapes, so that practically any desired geometry can be defined. The shape-controlled nanowires can be grown on almost any substrate such as silicon wafer, quartz and glass slides, and even on plastic substrates (e.g., Kapton HN).  相似文献   

17.
A universal asymptotic expression for the law of nanowire (NW) growth in cases where the diffusion lengths for adatoms on the substrate surface are much greater than the NW radius and the diffusion lengths for adatoms on the side surface of the growing crystal are much greater than the NW length. The main stages of growth, which are characterized by different relations between the NW length and its radius and the growth time, are determined. Possible asymptotic regimes of NW epitaxy are considered, including the cases of exponential growth and limited growth to a certain critical thickness, which depend on the direction of the diffusion flux of adatoms on the side surface of the growing crystal.  相似文献   

18.
The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.  相似文献   

19.
A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve, and the energy spectrum of the emitted electron beam. The two investigated nanowires showed stable, Fowler-Nordheim-like emission behavior and a small energy spread. Their morphology was characterized afterward using transmission electron microscopy. The experimentally derived field enhancement factor corresponded to the one calculated using the basic structural information. The observed emission behavior contrasts the often unstable emission and large energy spread found for semiconductor emitters and supports the concept of Fermi-level pinning in indium arsenide nanowires. Indium arsenide nanowires may thus present a new type of semiconductor electron sources.  相似文献   

20.
Wan Q  Dattoli EN  Fung WY  Guo W  Chen Y  Pan X  Lu W 《Nano letters》2006,6(12):2909-2915
We report the growth and characterization of single-crystalline Sn-doped In2O3 (ITO) and Mo-doped In2O3 (IMO) nanowires. Epitaxial growth of vertically aligned ITO nanowire arrays was achieved on ITO/yttria-stabilized zirconia (YSZ) substrates. Optical transmittance and electrical transport measurements show that these nanowires are high-performance transparent metallic conductors with transmittance of approximately 85% in the visible range, resistivities as low as 6.29 x 10(-5) Omega x cm and failure-current densities as high as 3.1 x 10(7) A/cm2. Such nanowires will be suitable in a wide range of applications including organic light-emitting devices, solar cells, and field emitters. In addition, we demonstrate the growth of branched nanowire structures in which semiconducting In2O3 nanowire arrays with variable densities were grown epitaxially on metallic ITO nanowire backbones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号