首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During a core melt accident, a pressurization of the containment has to be expected, which could lead to a failure of the containment due to overpressurization. This failure mode is expected to be the most likely one for large dry containments under accident conditions. Also during a core melt accident, a large quantity of hydrogen may be generated, giving the potential of a loss of containment integrity due to violent hydrogen combustion. Timely venting of the containment atmosphere can prevent overpressurization and may perhaps make the hydrogen situation in the containment less severe. This paper discusses the thermodynamic consequences of different vent strategies for a large German PWR during core melt accidents.  相似文献   

2.
压水堆核电厂发生严重事故期间,从主系统释放的蒸汽、氢气以及下封头失效后进入安全壳的堆芯熔融物均对安全壳的完整性构成威胁。以国内典型二代加压水堆为研究对象,采用MAAP程序进行安全壳响应分析。选取了两种典型的严重事故序列:热管段中破口叠加设备冷却水失效和再循环高压安注失效,堆芯因冷却不足升温熔化导致压力容器失效,熔融物与混凝土发生反应(MCCI),安全壳超压失效;冷管段大破口叠加再循环失效,安全壳内蒸汽不断聚集,发生超压失效。通过对两种事故工况的分析,证实了再循环高压安注、安全壳喷淋这两种缓解措施对保证安全壳完整性的重要作用。  相似文献   

3.
Containment depressurization has been implemented for many nuclear power plants (NPPs) to mitigate the risk of containment overpressurization induced by steam and gases released in LOCA accidents or generated in molten core concrete interaction (MCCI) during severe accidents. Two accident sequences of large break loss of coolant accident (LB-LOCA) and station blackout (SBO) are selected to evaluate the effectiveness of the containment venting strategy for a Chinese 1000 MWe NPP, including the containment pressure behaviors, which are analyzed with the integral safety analyses code for the selected sequences. Different open/close pressures for the venting system are also investigated to evaluate CsI mass fraction released to the environment for different cases with filtered venting or without filtered venting. The analytical results show that when the containment sprays can't be initiated, the depressurization strategy by using the Containment Filtered Venting System (CFVS) can prevent the containment failure and reduce the amount of CsI released to the environment, and if CFVS is closed at higher pressure, the operation interval is smaller and the radioactive released to the environment is less, and if CFVS open pressure is increased, the radioactive released to the environment can be delayed. Considering the risk of high pressure core melt sequence, RCS depressurization makes the CFVS to be initiated 7 h earlier than the base case to initiate the containment venting due to more coolant flowing into the containment.  相似文献   

4.
5.
The gas-cooled fast breeder reactor (GCFR) under design by Gulf General Atomic is cooled with helium pressurized to 85 atm and has the reactor core, the steam generators and their associated steam turbine-driven helium circulators, and auxiliary core cooling loops all contained within a massive prestressed concrete reactor vessel (PCRV).The response of the GCFR to coolant depressurization accidents has been investigated and it has been shown that this class of accidents can be safely handled with considerable safety margin. Rapid depressurization is assumed to be caused by a seal failure in a large concrete plug closing one of the large PCRV cavities and the depressurization rate is controlled by a flow restrictor incorporated within the closure plug. Continued core cooling is provided by the main core cooling loops. The plant transient reponse following a depressurization accident has been calculated with a computer code developed at GGA. The results obtained indicate rather mild increases in peak clad temperature for a depressurization accident with the leak area defined by the flow restrictor.Additional cases investigating larger leak areas to explore safety margins indicate that the peak cladding temperature does not increase rapidly with increasing leak area. Secondary containment conditions in a depressurization accident have also been evaluated.  相似文献   

6.
核电厂安全壳及其功能保障问题   总被引:5,自引:0,他引:5  
根据国内外最新研究结果,综述了核电厂安全壳及其功能保障方面的主要问题,重点叙述了安全壳在严重事故下的行为、失效模式和导致安全壳失效的物理现象,讨论了安全壳功能保障中的排热减压、消氢、防止高压熔堆及防止底板熔穿等问题,最后简评了安全壳的改进措施。  相似文献   

7.
A containment is proposed for a high rating PWR (1300 MWe) that makes it possible to reject sufficient heat to maintain internal conditions below design limits during any postulated design basis accident. The proposed containment thus eliminates the need to employ active features for containment cooling, and conformes to guidelines set forth for passive reactor systems. [EPRI, 1987] The design is based in part on a currently operating PWR containment (Waterford 3). A series of modifications and additions are necessary to make passive heat rejection possible. The modifications are an increase in free volume and primary shell surface area. The additions are the perforation of the secondary containment structure to form an air-convection annulus, and allow the submersion of the lower part of the containment into an external pool; an internal pool increases in-containment heat storage. Proposed features are evaluated analytically, computationally and, where possible and necessary, experimentally. The proposed containment is shown to remain below current regulatory limits for the design-basis postulated loss of coolant accident.  相似文献   

8.
It has been found that the pressure in the reactor coolant system (RCS) remains high in some severe accident sequences at the time of reactor vessel failure, with the risk of causing direct containment heating (DCH).Intentional depressurization is an effective accident management strategy to prevent DCH or to mitigate its consequences. Fission product behavior is affected by intentional depressurization, especially for inert gas and volatile fission product. Because the pressurizer power-operated relief valves (PORVs) are latched open, fission product will transport into the containment directly. This may cause larger radiological consequences in containment before reactor vessel failure. Four cases are selected, including the TMLB' base case and the opening one, two and three pressurizer PORVs. The results show that inert gas transports into containment more quickly when opening one and two PORVs,but more slowly when opening three PORVs; more volatile fission product deposit in containment and less in reactor coolant system (RCS) for intentional depressurization cases. When opening one PORV, the phenomenon of revaporization is strong in the RCS.  相似文献   

9.
应用MELCOR 2.1程序,建立了大功率非能动压水堆核电厂主要回路系统及安全壳的热工水力模型,并以直接注水管线破口叠加内置换料水箱失效触发严重事故为对象进行了独立计算。计算结果与MAAP 4.04程序计算结果趋势一致,分析表明:MELCOR 2.1新版本对严重事故计算合理可信;部分非能动安全设施的启动有效地降低了主回路系统压力,防止高压熔堆,缓解了堆芯熔化进程,从而验证了非能动安全设施的有效性。  相似文献   

10.
In order to estimate the risk associated with Pressurized Thermal Shock (PTS), a sample calculation of the core melt frequency and offsite consequences has been performed for Oconee Unit 1, a Babcock and Wilcox pressurized water reactor located in the United States. Core melt frequency was derived from through-wall-crack frequency estimates based on thermal-hydraulic and fracture mechanics analyses performed by Oak Ridge National Laboratory and Pacific Northwest Laboratory. The mode and timing of containment response was estimated from previous risk studies for Oconee Unit 3 and other plants with large dry containments.The core melt frequency was calculated to be 6 × 10−6 per reactor year for operation at the PTS screening criterion. Operation of redundant and independent containment heat removal systems results in low probability of containment failure. The risk dominant scenario involves overpressure failure of containment due to failure of containment heat removal. Prompt containment failure was assigned a very low probability (10−4), and hydrogen burn failure was not considered.The central estimate of annual risk was 5 × 10−7 early fatalities, 2 × 10−4 latent cancer fatalities and 0.7 person-rem. These values are minimal compared with other severe accident scenarios.Uncertainties and sensitivies to important parameters are discussed. The response of other types of plants is briefly described.  相似文献   

11.
During a steam generator tube rupture (SGTR) accident, direct release of radioactive nuclides into the environment is postulated via bypassing the containment building. This conveys a significant threat in severe accident management (SAM) for minimization of radionuclide release. To mitigate this risk, a numerical assessment of SAM strategies was performed for an SGTR accident of an Optimized Power Reactor 1000 MWe (OPR1000) using MELCOR code. Three in-vessel mitigation strategies were evaluated and the effect of delayed operation action was analyzed. The MELCOR calculations showed that activation of a prompt secondary feed and bleed (F&B) operation using auxiliary feed water and use of an atmospheric dump valve could prevent core degradation. However, depressurization using the safety depressurization system could not prevent core degradation, and the injection of coolant via high-pressure safety injection without the use of reactor coolant system (RCS) depressurization increased fission product release. When mitigation action was delayed by 30 minutes after SAMG entrance, a secondary F&B operation failed in depressurizing the RCS sufficiently, and a significant amount of fission products were released into the environment. These results suggest that appropriate mitigation actions should be applied in a timely manner to achieve the optimal mitigation effects.  相似文献   

12.
压水堆核电厂的高压熔堆事故覆盖了大部分的严重事故序列,且具有很大的潜在威胁。根据我国900MW压水堆核电厂的概率安全分析(PSA)结果选取了丧失厂外电、未能紧急停堆的预期瞬态、二回路管道破口、一回路小破口和蒸汽发生器传热管破裂5种典型的高压熔堆严重事故序列,并使用SCDAP/RELAP5程序对这些事故序列的进程和后果进行了计算分析。计算结果表明:5种典型高压熔堆事故序列可能导致高压熔喷和安全壳直接加热风险,可能引起安全壳早期失效,很有必要采取相应的一回路卸压措施。  相似文献   

13.
For the mitigation of severe accidents, the European Pressurized Water Reactor (EPR) has adopted and improved the defense-in-depth approaches of its predecessors, the French “N4” and the German “Konvoi” plants. Beyond the corresponding evolutionary changes, the EPR includes a new, 4th level of defense-in-depth that is aimed at limiting the consequences of a postulated severe accident with core melting. It involves a strengthening of the confinement function and the avoidance of large early releases. The latter requires the prevention of scenarios and events that can result in high loads on the containment, e.g., a failure of the Reactor Pressure Vessel (RPV) at high internal pressure. This is achieved by dedicated design measures.

The paper gives an short overview of the general concept and the strategies for: primary circuit depressurization, H2 mitigation and the avoidance of energetic Fuel Coolant Interactions (FCIs). It then describes, in detail, the conceptual solution for the stabilization and long-term cooling of the molten core.

The EPR melt retention strategy supports itself on the use of an ex-vessel core catcher located in a compartment lateral to the pit. The related spatial and functional separation isolates the core catcher from the various loads during RPV failure and, at the same time, avoids risks resulting from an unintended initiation of the system during power operation.

Within the core catcher, the melt will be passively flooded with water from the Internal Refueling Water Storage Tank (IRWST). Due to the effective cooling of the melt from all sides a stable state will be reached within hours and complete solidification of the melt is achieved after a few days. The core catcher can optionally be supplied by the Containment Heat Removal System (CHRS). In this active mode of operation, the water levels inside spreading compartment and reactor pit rise and the pools become subcooled, so further steaming is avoided. This results in a depressurization of the containment in the long-term.  相似文献   


14.
This two part paper discusses Mark I shell failure from two perspectives. In Part One a general overview of nuclear health consequences and risks is provided. Comparisons between calculated risks and the NRC's safety goals are offered. Use is made of present PRA results to calculate risks as well as simpler techniques that do not rely on more realistic calculations of source terms. These simpler techniques for estimating nuclear risks also minimize the use of PRA methodologies.In Part Two the results of specific Mark I accident sequences is analyzed. Source terms, accident containment pressure transient plots, and a discussion of the relevance of this information to the Mark I shell failure is provided. Of particular interest is the mitigation potential of extended use of the automatic depressurization system during station blackout conditions.  相似文献   

15.
AP1000小破口叠加重力注射失效严重事故分析   总被引:1,自引:1,他引:0  
应用新版MELCOR程序,建立了AP1000一二回路、非能动安全系统及安全壳隔室的热工水力模型,并以热段小破口叠加重力注射系统失效事故为例,对该严重事故进程在压力容器内阶段进行模拟计算,对缓解措施的功能进行了分析和评价。结果表明:自动卸压系统(ADS1~4)的成功实施,可使来自堆芯补水箱和安注箱的冷却水快速有效地注入堆芯,在冷却水完全耗尽前,堆芯始终处于淹没的状态。ADS4爆破阀开启后,使回路压力快速与安全壳压力平衡;非能动安全壳冷却系统对抵御严重事故下由于衰变热和非冷凝气体带来的缓慢升温升压是行之有效的措施;点火器在氢气浓度较低时点火,缓解了安全壳大空间发生全局燃爆而引发安全壳超压失效的风险,但连续点火燃烧会引起局部隔室温升远超出设计温度而危及后备缓解设施的存活。  相似文献   

16.
Postulating an unlikely core melt down accident for a light water reactor (LWR), the possible failure mode of the reactor pressure vessel (RPV) and its failure time have to be investigated for a determination of the load conditions for subsequent containment analyses. Worldwide several experiments have been performed in this field accompanied with material properties evaluation, theoretical, and numerical work.  相似文献   

17.
The project on ex-vessel core melt stabilization research (ECOSTAR) started in January 2000 to be concluded by end of 2003. The project is performed by 14 partner institutions from five European countries and involves a large number of experiments with low- and high-temperature simulant melts and real corium at different scales. Model development and scaling analysis allows application of the research results to existing and to future LWRs in the area of reactor design and accident mitigation. The project is oriented toward the analysis and mitigation of severe accident sequences that could occur in the ex-vessel phase of a postulated core melt accident. The issues are: (1) the release of melt form the pressure vessel, (2) the transfer and spreading of the melt on the basement, (3) the analysis of the physical–chemical processes that are important for corium behavior especially during concrete erosion with onset of solidification, and (4) stabilization of the melt by cooling through direct water contact. The results achieved so far resolve a number of important issues: the amount of melt that could be transferred at RPV failure from the RPV into the containment can be substantially reduced by lowering the residual pressure in the primary circuit. It is found that melt dispersion also strongly depends on the location of the RPV failure, and that lateral failure results in substantially less melt dispersion. During melt release, the impinging melt jet could erode parts of the upper basement surface. Jet experiments and a derived heat transfer relation allow estimation of its contribution to concrete erosion. Spreading of the corium melt on the available basement surface is an important process, which defines the initial conditions for concrete attack or for the efficiency of cooling in case of water contact, respectively. Validation of the spreading codes based on a large-scale benchmark experiment is underway and will allow determination of the initial conditions, for which a corium melt can be assumed to spread homogeneously over the available surface. Experiments with UO2-based corium melts highlight the role of phase segregation during onset of melt solidification and during concrete erosion. To cool the spread corium melt, the efficacy of top flooding and bottom flooding is investigated in small-scale and in large-scale experiments, supported by model developments. Project assessment is continuing to apply the results to present and future reactors.  相似文献   

18.
The containment failure probability due to ex-vessel steam explosions was evaluated for Japanese BWR and PWR model plants. A stratified Monte Carlo technique (Latin Hypercube Sampling (LHS)) was applied for the evaluation of steam explosion loads, in which a steam explosion simulation code JASMINE was used as a physics model. The evaluation was made for three scenarios: a steam explosion in the pedestal area or in the suppression pool of a BWR model plant with a Mark-II containment, and in the reactor cavity of a PWR model plant. The scenario connecting the generation of steam explosion loads and the containment failure was assumed to be displacement of the reactor vessel and pipings, and failure at the penetration in the containment boundary. We evaluated the conditional containment failure probability (CCFP) based on the preconditions of failure of molten core retention within the reactor vessel, relocation of the core melt into the water pool without significant interference, and a strong triggering at the time of maximum premixed mass. The obtained mean and median values of the CCPF were 6.4x 10?2 (mean) and 3.9x 10?2 (median) for the BWR suppression pool case, 2.2x10?3 (mean) and 2.8x10?10 (median) for the BWR pedestal case, and 6.8X10?2 (mean) and 1.4x10?2 (median) for the PWR cavity case. The evaluation of CCFPs on the basis of core damage needs consideration of probabilities for the above-mentioned preconditions. Thus, the CCFPs per core damage should be lower than the values given above. The specific values of the probability were most dependent on the assumed range of melt flow rate and fragility curve that involved conservatism and uncertainty due to simplified scenarios and limited information.  相似文献   

19.
根据EPR堆芯结构、材料组成及其屏蔽系统设计,建立了EPR堆芯γ辐射剂量率模拟模型。采用MCNP5分别计算了反应堆正常运行工况、堆芯失水及堆芯融化等严重事故条件下安全壳内γ剂量率空间分布,分析对比严重事故、正常工况下安全壳内辐射剂量率分布与设计剂量率限值的差异。研究结果可为预估EPR堆芯事故情况及核事故应急决策提供相关数据参考。  相似文献   

20.
The containment response to a postulated core meltdown accident in a PWR ice condenser containment, a BWR Mark III containment and a BWR non-inerted Mark I containment has been examined to see if the WASH-1400 containment failure mode judgement for the Surry large, dry containment and the Peach Bottom Mark I inerted-containment are likely to be appropriate for these alternative containment plant designs. For the PWR, the representative accident chosen for the analysis is a large cold leg break accompanied by a loss of all electric power while the BWR representative event chosen is a recirculation line break without adequate core cooling function. Two containment event paths are studied for each of these two cases, depending on whether or not containment vapor suppression function is assumed to be available. Both the core and the containment pressure and temperature response to the accident events are computed for the four time intervals which characterize (a) blowdown of the pipe break, (b) core melt, (c) vessel melt-through, and (d) containment foundation penetration. The calculations are based on a best estimate of the most probable sequence, but certain phenomena and events were followed down multiple tracks. These include the temperature of the non-condensibles escaping the ice condenser into the upper compartment, the performance of the pressure suppression system, the distribution of non-condensibles between compartments, and the degree and rate of combustion of hydrogen generated from metal-water reactions. For the PWR ice condenser case, results indicate that the containment would be breached by (i) steam overpressurization during the blowdown period (time less than 20 sec) if the ice condenser fails to perform its function, (ii) by overpressurization and thermal stress during the core melt period if 25% or more of the core zirconium reacts with water followed by hydrogen burning and, and (iii) by the overpressurization due to non-condensibles before containment floor penetration is completed. For the BWR Mark III case, similar conclusions can be drawn for the loss of vapor suppression, and for the hydrogen burning if the extent of zirconium-water reaction is more than 35% of the core inventory. If the hydrogen burning fails to materialize, the containment can retain its integrity until containment meltthrough provided the melting is confined to the reactor pedestal area. It appears that the non-inerted Mark I containment is not so vulnerable to overpressurization from hydrogen burning as the Mark III; however, acceptable temperatures may be exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号