首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the effect of Cd on the microstructure, mechanical properties and general corrosion behaviour of AZ91C alloys was investigated. Addition of Cd was found not to be efficient in modifying/refining the microstructure or β-phase. A morphology change in β-phase from fine continuous precipitates to discontinuous β-phase upon the addition of Cd was observed. A marginal increment in mechanical properties was observed. General corrosion behaviour was followed with weight loss measurements, potentiostatic polarisation studies and surface studies in 3.5% sodium chloride solution and 3.5% sodium chloride with 2% potassium dichromate solution. Cd addition deteriorated the corrosion behaviour of AZ91C. This behaviour was attributed to the formation of chunks of β-phase upon the addition of Cd. AZ91C with refined β-phase distribution, performed rather better in the NaCl solutions.  相似文献   

2.
采用自制的90°模具,经Bc路径在温度为300℃下研究对比了铸态及不同道次的等通道挤压(ECAP)态AZ81镁合金微观组织和力学性能.结果表明ECAP随着挤压道次的增加,AZ81镁合金显微组织和力学性能发生显著变化.当挤压到4道次,平均晶粒尺寸由原来铸态的145um细化为9.6um,拉伸断口韧窝明显增多;抗拉强度从180 MPa提高到306 MPa,延伸率和硬度分别达到15.8%和142HL.分析表明,AZ81镁合金在高温挤压过程中Mg17Al12相粒子被破碎,并部分溶入基体,$-Mg基体与%-Mg17Al12相互相阻碍其晶粒长大,获得细小晶粒组织.  相似文献   

3.
This paper focuses on the effect of deep cryogenic treatment (−196 °C) on microstructure and mechanical properties of AZ91 magnesium alloy. The execution of deep cryogenic treatment on samples changed the distribution of β precipitates. The tiny laminar β particles almost dissolved in the microstructure and the coarse divorced eutectic β phase penetrated into the matrix. This microstructural modification resulted in a significant improvement on mechanical properties of the alloy. The steady state creep rates were measured and it was found that the creep behavior of the alloy, which is dependent on the stability of the near grain boundary microstructure, was improved by the deep cryogenic treatment. For the AZ91 alloy, the results indicate a mixed mode of creep behavior, with some grain boundary effects contributing to the overall behavior. However for the deep cryogenic samples dislocation climb controlled creep is the dominant deformation mechanism. After the deep cryogenic treatment the sliding of grain boundaries was greatly suppressed due to morphological changes. As a result, the grain boundaries are less susceptible for grain boundary sliding at high temperatures. Dry sliding wear tests were also applied and the wear resistance of the alloy improved remarkably after deep cryogenic treatment.  相似文献   

4.
The microstructure of ultrafine grain for magnesium alloys can result in drastic enhancement in their room temperature strength, but the issue of low strength at elevated temperature becomes more serious as well due to grain boundary slide. Here ultrafine-grained Ti/AZ31 magnesium matrix composites with high strength at both room and elevated temperature were prepared by vacuum hot pressing and subsequent hot extrusion. The microstructure of the composite samples before and after consolidation processing was characterized, and the mechanical properties of the as-consolidated bulk samples were measured at room and elevated temperatures. The results indicate that after extrusion ultrafine-grained magnesium alloys were obtained and Ti particulates with particulate size of ~310?nm disperse in Mg matrix. The magnesium grain of AZ31-15at.%Ti grows from 66?nm to 800?nm. Meanwhile, the relative densities of Ti/AZ31 composites are higher than 99%. The yield strength (YS) of extruded AZ31-15at.%Ti composite at room temperature is 341?MPa, being 2.4 times higher than original AZ31 alloy. Theoretical estimation shows that remarkably enhanced room-temperature mechanical strength attributes to grain boundary strengthening with the contribution ratio of 74%. In addition, the peak stress of extruded AZ31-15at.%Ti composite at 573?K is 82?MPa and ultrafine Ti dispersions are responsible for the enhanced strength.  相似文献   

5.
The effect of Pd addition (0, 2, and 4 wt%) on the microstructure and creep properties of permanent mold AZ61 (Mg-6Al-1Zn) alloy has been studied. The results indicate that Pd addition introduces a lamella-shaped Al4Pd phase at the grain boundary, in addition to the Mg17Al12 (β) phase. The addition of Pd also suppresses the precipitation of the Mg17Al12 phase and residual Al at grain boundaries during solidification. These effects lead to an improvement in the creep behavior of AZ61. Moreover, extended steady-state creep and reductions in both the minimum creep rate and total creep strain are also observed in the case of 4 wt% Pd addition.  相似文献   

6.
A new testing procedure, employing transverse load was adopted to investigate the high cycle fatigue behaviour of low pressure cast AZ91 magnesium alloy. The tests were conducted with an electro dynamic shaker system by employing specimens fabricated as per ASTM standard. SN plot was generated from the test results and compared with that of gravity cast AZ91 alloy tested in identical ambience. The influence of transverse load on the fatigue behaviour of these alloys is discussed. As fatigue cracks were found to have initiated in pores in most of the tested samples, pores were assumed as initial cracks as per linear fracture mechanics and the critical stress intensity amplitude (Kcr) was estimated. Structure–fatigue property correlations are discussed using fractographs. Mean stress effect on the fatigue properties and effects of alloying constituents are also discussed.  相似文献   

7.
《材料科学技术学报》2019,35(6):1017-1026
In this study, Cu was added into the high-pressure die-casting Al-5.5Mg-0.7Mn (wt%) alloy to improve the tensile properties. The effects of Cu addition on the microstructures, mechanical properties of the Al-5.5Mg-0.7Mn alloys under both as-cast and T5 treatment conditions have been investigated. Additions of 0.5 wt%, 0.8 wt% and 1.5 wt% Cu can lead to the formation of irregular-shaped Al2CuMg particles distributed along the grain boundaries in the as-cast alloys. Furthermore, the rest of Cu can dissolve into the matrixes. The lath-shaped Al2CuMg precipitates with a size of 15–20 nm × 2–4 nm were generated in the T5-treated Al-5.5Mg-0.7Mn-xCu (x = 0.5, 0.8, 1.5 wt%) alloys. The room temperature tensile and yield strengths of alloys increase with increasing the content of Cu. Increasing Cu content results in more Al2CuMg phase formation along the grain boundaries, which causes more cracks during tensile deformation and lower ductility. Al-5.5Mg-0.7Mn-0.8Cu alloy exhibits excellent comprehensive tensile properties under both as-cast and T5-treated conditions. The yield strength of 179 MPa, the ultimate tensile strength of 303 MPa and the elongation of 8.7% were achieved in the as-cast Al-5.5Mg-0.7Mn-0.8Cu alloy, while the yield strength significantly was improved to 198 MPa after T5 treatment.  相似文献   

8.
The present study aims to investigate the effect of carbon addition on the hot rolling behavior of as-cast AZ91 alloy. The AZ91 and C-added AZ91 alloys were subjected to hot rolling at 400 °C with a reduction of 30% per one pass. The as-cast C-added AZ91 alloy with very fine equi-axed grains of approximately 75 μm exhibited excellent hot rollability compared to as-cast AZ91 alloy with coarse dendrite structure, although the final grain size of the rolled C-added AZ91 alloy sheet was slightly larger than that of the rolled AZ91 alloy sheet. The side-crack occurrence on the surface during hot-rolling is mainly affected by the existence of twin boundary and the area fraction of grain boundaries. Based on the results, the improvement in rollability of the C-added AZ91 alloy is attributed to fine equi-axed grains and the polygonal Al8Mn5 phase located inside grains, which can homogeneously distribute and effectively absorb strain energy and prohibit crack growth.  相似文献   

9.
The effects of 2 wt.% rare earth element addition on the microstructure evolution, thermal stability and shear strength of AZ91 alloy were investigated in the as-cast and annealed conditions. The as-cast structure of AZ91 consists of α-Mg matrix and the β-Mg17Al12 intermetallic phase. Due to the low thermal stability of this phase, the strength of AZ91 significantly decreased as the temperature increased. The addition of rare earth elements refined the microstructure and improved both thermal stability and high-temperature mechanical properties of AZ91. This was documented by the retention of the initial fine microstructure and ultimate shear strength (USS) of the rare earth elements-containing material after long-term annealing at 420 °C. The improved stability and strength are attributed to the reduction in the volume fraction of β-Mg17Al12 and retention of the thermally stable Al11RE3 intermetallic particles which can hinder grain growth during the annealing process. This behavior is in contrast to that of the base material which developed a coarse grain structure with decreased strength caused by the dissolution of β-Mg17Al12 after exposure to high temperature.  相似文献   

10.
Abstract

The effects of neodymium rich rare earth elements [RE(Nd)] on microstructure and mechanical properties of as cast AZ31 magnesium alloy were investigated. The microstructures of as cast AZ31–xRE(Nd) alloys display a dendrite configuration, and the secondary dendrite spacing of the α-Mg phase was decreased with the increasing Nd content. The addition of RE(Nd) resulted in the formation of Al2Nd and Mg12Nd phases. Mechanical properties were improved significantly due to grain refinement and precipitation of intermetallic phases. When the amount of RE is 1·0 wt-%,The as cast AZ31 alloy reached its maximum tensile strength of 249 MPa at room temperature, yield strength of 169 MPa and elongation of 9·0%.  相似文献   

11.
Creep behavior of a cast MRI153 magnesium alloy was investigated using impression creep technique. The tests were carried out under constant punching stress in the range of 360–600 MPa at temperatures between 425 and 490 K. Microstructure of the alloy was composed of α(Mg) matrix phase besides Mg17Al12 and Al2Ca intermetallic compounds. Stress exponent of minimum creep rate, n, was found to vary between 6.45 and 7. Calculation of the activation energy showed a slight decrease with increasing stress such that the creep activation energy of 115.2 kJ/mol under σimp/G = 0.030 decreased to 99.5 kJ/mol under σimp/G = 0.040. The obtained stress exponent and activation energy data suggested that the pipe diffusion dislocation climb controlled creep as the dominant mechanism during the creep test.  相似文献   

12.
Strict government regulations and environmental concerns are the driving forces behind the increased use of magnesium alloys aimed at weight reductions. This however inevitably leads to increased magnesium alloy scrap and calls for effective recycling processes. In this paper, the melt conditioned high pressure die casting (MC-HPDC) process has been investigated as a physical approach for the recycling of AM series magnesium alloy die casting scrap. Process optimization was required to eliminate hot cracking phenomena. The experimental results showed that intensive melt shearing alters the size and morphology of MgO present in the scrap melt, leading to an effective grain refinement that was reflected in the mechanical properties of the recycled alloy. The MC-HPDC process showed excellent potential as a physical recycling approach for Mg alloy scrap, producing casting with properties comparable to those of fresh Mg alloys.  相似文献   

13.
A new cast Mg–2 Gd–2 Nd–2 Y–1 Ho–1 Er–0.5 Zn–0.4 Zr(wt%) alloy was prepared by direct-chill semicontinuous casting technology. The microstructure, mechanical properties and thermal conductivity of the alloy in as-cast, solid-solution treated and especially peak-aged conditions were investigated. The as-cast alloy mainly consists of β-Mg matrix,(Mg, Zn)_3 RE phase and basal plane stacking faults. After proper solid-solution treatment, the microstructure becomes almost Mg-based single phase solid solution except just very few RE-riched particles. The as-cast and solid-solution treated alloys exhibit moderate tensile properties and thermal conductivity. It is noteworthy that the Mg alloy with 8 wt% multiple RE exhibits remarkable age-hardening response( HV = 35.7), which demonstrates that the multiple RE(RE = Gd, Nd, Y, Ho, Er) alloying instead of single Gd can effectively improve the age-hardening response.The peak-aged alloy has a relatively good combination of high strength/hardness(UTS(ultimate tensile strength) 300 MPa; TYS(tensile yield strength) 210 MPa; 115.3 HV), proper ductility(ε≈ 6%) and moderate thermal conductivity(52.5 W/(m K)). The relative mechanisms mainly involving aging precipitation of β¢ and β' phases were discussed. The results provide a basis for development of high performance cast Mg alloys.  相似文献   

14.
The AZ91 magnesium alloy, preformed with complete shape, has been prepared using spray forming technology under a protective atmosphere. The microstructure and mechanical properties have been investigated. Initially, a homogeneous and equiaxed-grain structure with average grain size of 20 μm was obtained. The tendency for segregation of the divorced eutectic β(Mg17Al12) phase towards the grain boundary was greatly reduced. Further grain refinement was attributed to dynamic recrystallization during extrusion processing. When solution treated at 415 °C and aged at 175 °C, two kinds of β(Mg17Al12) precipitates are formed: the majority are lamellar discontinuous precipitates, in addition to a small amount of dispersed continuous precipitates. The average tensile ultimate and yield strength of the spray-formed and extruded AZ91 magnesium alloy samples were 435 MPa and 360 MPa with a room temperature elongation of 9.2%, indicating an enhanced combination of toughness and strength.  相似文献   

15.
Analysis of the recently proposed equal channel angular bending(ECAB)process is provided on thin hotrolled AZ31 magnesium alloy sheets.In particular,effects of deformation temperature and strain path on the texture evolution and mechanical properties are systematically investigated under single pass ECAB at various temperatures and multi-pass ECAB process that involves changes in strain paths.It is found that simultaneous activation of multiple twinning types is successfully introduced during ECAB,which results in obvious tilted component of basal texture.Attributed to the domination of extension twins,weaker basal textures are detected after both single pass ECAB at 150℃and three cross passes ECAB at 200℃.After annealing,the basal texture is further weakened via twin-related recrystallization and the annealed microstructure is featured with mixture of basal and non-basal orientated grains.Additionally,the effect of grain orientation on the mode of plastic deformation and the roles of grain orientation and grain boundary on the local strain accommodation are coherently studied.This study reveals that over 60%increase of uniform elongation with marginal reduction of tensile strength less than 5%can be achieved for single pass ECAB at 150℃and three cross passes ECAB at 200℃,which is the result of larger fraction of grains favored with extension twinning and better local strain accommodation.  相似文献   

16.
The elevated-temperature plasticity and flow behavior of an Er-modified, heat-resistant ZA73 alloy was evaluated by thermal simulation. The results showed that the addition of Er to ZA73 alloy notably improves the deformability and higher strain rate and temperature favors hot deformation. Bars with sound surface quality were successfully extruded at 350 °C and a strain rate of ~ 0.1 s− 1. Furthermore, dynamic precipitation of nano-sized spherical τ phase was found to occur uniformly in the α-Mg matrix during hot extrusion, which is considered helpful to both strength and plasticity enhancement. The yield strength and ultimate tensile strength of the as-extruded bars reached 240-265 MPa and 355-360 MPa, respectively, while maintaining a large elongation rate of 18-19.5%.  相似文献   

17.
Bio-corrosion of a magnesium alloy with different processing histories   总被引:1,自引:0,他引:1  
H. Wang  Y. Estrin 《Materials Letters》2008,62(16):2476-2479
High rates of degradation in corrosive media represent the Achilles heel of Mg alloys, which hinders their applications in various areas, particularly in prosthetics. We present an investigation of the degradation behaviour of magnesium alloy AZ31 in Hank's solution that simulates bodily fluids. The degradation rate is shown to be significantly reduced by grain refinement produced by mechanical processing. In particular, hot rolling does lead to a desirable retardation of degradation, while subsequent equal channel angular pressing does not result in any further reduction of degradation rate.  相似文献   

18.
The influence of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y (wt.%) magnesium alloy was investigated. The grain size of alloys decreased with Zr content from 0% to 0.93% (wt.%). The addition of Zr greatly improved the ultimate tensile strength (UTS) and the elongation (EL), while slightly improved the tensile yield strength (TYS). The UTS and the EL of the alloy containing 0.93% Zr increased by 125.8 MPa and 6.96% compared with base alloy, respectively. The corrosion resistances were found to decrease with Zr content from 0% to 0.42% and then increase from 0.42% to 0.93%. The differences in the sizes and distributions of the Zr-rich particles have significant effects on the corrosion behaviors. The alloy with 0.42% Zr addition revealed the optimum combination of mechanical properties and corrosion resistance.  相似文献   

19.
Damping behaviour of AZ91 magnesium alloy with cracks   总被引:7,自引:0,他引:7  
The amplitude-dependent damping of a commercial magnesium cast alloy AZ91 was determined at room temperature by measurement of the logarithmic decrement of free decaying vibrations of bending beams clamped at one side. In order to generate cracks in the specimens they were subjected to (1) isochronal heat treatments for 1 h at temperatures above 400 °C with succeeding quenching in cold water and (2) controlled fatigue bending loading in the same equipment also used for the damping measurements. After both treatments, the amplitude-dependent damping curves show a maximum for strains 10−5 to 10−3, which can be correlated with the presence of cracks and can be explained by a simple rheological model based on crack damping. This maximum is enhanced when the number of loading cycles or the quenching temperature is increased which can be explained by crack nucleation. Crack growth with increasing number of loading cycles shifts the maximum to lower strains.  相似文献   

20.
The fatigue results of a high‐pressure die cast of AZ91D magnesium alloy revealed the presence of different types of casting defects, which account for the large scattering in the number of cycles until failure. In this paper, this magnesium alloy has been analysed, and in an effort to reproduce the same surface and material conditions exhibited in automotive service components, the fatigue test samples were manufactured using a die that employs the same casting process and equipment. To examine the fracture surface of all the fatigue tests, a scanning electron microscope was used, and the source of the failure, so as to relate fatigue life with casting defect type, was identified. Five casting defect types that influence the fatigue behaviour were observed and classified: (a) isolated pores (blowholes), (b) micro‐porosity areas, (c) circular shrinkage cavities associated with the contraction and geometry of the casted specimen, (d) surface burrs associated with the die‐casting mould and (e) the presence of oxides or inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号