首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄永升  顾伟  陈晓蓉  梅华 《工业催化》2014,22(6):456-461
以HZSM-5为载体,采用浸渍法制备系列Pd/HZSM-5催化剂,在高压连续流动固定床反应器中考察Pd/HZSM-5催化剂催化加氢丙酮一步法合成甲基异丁基酮性能,并对工艺条件进行优化。结果表明,当HZSM-5载体上Pd负载质量分数为0.5%时,在反应温度140 ℃、氢压1 MPa、空速0.48 h-1和氢酮物质的量比为1条件下,Pd/HZSM-5催化剂催化活性较高,丙酮转化率为45.91%,甲基异丁基酮选择性为94.33%。采用XRD、H2-TPD、SEM、EDS和TGA等对催化剂进行表征,结果表明,负载质量分数0.5%的Pd在HZSM-5分子筛表面分散均匀,且0.5%Pd/HZSM-5催化剂具有较高氢吸附能力,失活的主要原因为催化剂表面积炭,采用流化床反应器取代传统的固定床反应器可以很好的解决催化剂积炭问题。  相似文献   

2.
以不同浓度的NaOH溶液对HZSM-5分子筛进行碱处理改性后所得多级孔ZSM-5分子筛作为活性组分制备甲醇制芳烃催化剂,采用XRD、SEM、NH3-TPD和N2吸-脱附等手段对催化剂进行了表征,分别考察了碱处理改性对分子筛催化剂骨架结构、酸性质、孔结构以及催化性能的影响.结果表明,通过合适浓度的NaOH碱溶液处理后,HZSM-5分子筛在保持微孔骨架结构的同时,可以调变其晶内介孔孔道结构分布以及酸性质.随着NaOH碱溶液浓度升高,HZSM-5分子筛的酸量、介孔孔容、介孔表面积都增加、孔容分布变宽,催化剂的活性和稳定性等催化性能得以改善.HZSM-5分子筛碱处理改性适宜的NaOH溶液浓度为0.4 mol/L,改性后的催化剂芳烃收率由25.07%增加到32.22%,使用寿命由8d增加到16d,但NaOH溶液浓度超过0.6 mol/L后会严重破坏HZSM-5分子筛骨架结构,催化活性下降较快.  相似文献   

3.
采用水热法合成纳米和微米尺寸的HZSM-5分子筛,并用浸渍法负载Mg对纳米HZSM-5分子筛进行改性,通过XRD、SEM、N_2等温吸附-脱附、NH_3-TPD和TGA对分子筛进行表征,并将其用于甲醇与1-丁烯偶合制丙烯反应,考察分子筛晶粒尺寸、Mg负载量、反应温度、空时和甲醇与1-丁烯物质的量比对催化剂反应性能的影响。结果表明,纳米HZSM-5分子筛具有比表面积大、孔道短和孔口多等特点,表现出较好的活性和稳定性及较强的容碳能力。利用Mg对纳米HZSM-5进行改性,提高了HZSM-5分子筛上原料的转化率和丙烯收率,在反应温度550℃、反应压力0.1 MPa、空时1.6 gcat·(h·mol_(CH_2))~(-1)和甲醇与1-丁烯物质的量比为3的条件下,1%Mg/HZSM-5分子筛催化剂上的丙烯收率最高,达41.8%,比未改性的纳米HZSM-5分子筛催化剂提高9.7个百分点。  相似文献   

4.
In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction..  相似文献   

5.
程序升温还原法制备了MoP/HZSM-5催化剂,并进行了XRD表征。以催化裂化全馏分油为原料,在小型连续固定床反应装置上,考察了工艺条件对催化剂芳构化降烯烃性能的影响。结果表明,MoP/HZSM-5催化剂具有较高活性和稳定性。在反应温度380 ℃、压力2.0 MPa、空速1.0 h-1和氢油体积比400∶1条件下,芳烃体积分数36.90%,烯烃体积分数26.16%,液收66.70%。  相似文献   

6.
采用离子交换法制备负载型纳米HZSM-5分子筛,采用负压-沉积沉淀法制备负载型纳米Au/HZSM-5催化剂,对载体及催化剂进行XRD、UV-Vis、TEM、XPS、NH3-TPD和FT-IR等表征,并评价催化剂的甲烷吸附性能。XRD与TEM表征结果表明,N2气氛焙烧的2.0%Au/HZSM-5催化剂金粒子尺寸较小,为(5~10) nm;UV-Vis表征结果表明,焙烧导致负载金的价态由离子态转为零价态,且N2气氛焙烧的2.0%Au/HZSM-5催化剂上零价金的吸收峰较弱,即相应的颗粒度较小;XPS表征结果表明,金负载量越高,催化剂上零价金占总金的比例越高;NH3-TPD表征结果表明,金负载量较小时,催化剂强酸中心峰面积较载体下降,负载量较大时,强酸和弱酸中心峰面积均下降;FT-IR表征结果表明,低温下金催化剂能将甲烷转化为含有烯烃双键的吸附物种,显示出载金催化剂对甲烷较强的C-H键活化能力。  相似文献   

7.
Nanoscale HZSM-5 zeolite was hydrothermally treated with steam containing 0.8 wt% NH3 at 773 K and then loaded with La2O3 and NiO. Both the parent nanoscale HZSM-5 and the modified nanoscale HZSM-5 zeolites catalysts were characterized by TEM, XRD, IR, NH3-TPD and XRF, and then the performance of olefins reduction in fluidized catalytic cracking (FCC) gasoline over the modified nanoscale HZSM-5 zeolite catalyst was investigated. The IR and NH3-TPD results showed that the amount of acids of the parent nanoscale HZSM-5 zeolite decreased after the combined modification, so did the strong acid sites deactivating catalysts. The stability of the catalyst was still satisfactory, though the initial activity decreased a little after the combined modification. The modification reduced the ability of aromatization of nanoscale HZSM-5 zeolite catalyst and increased its isomerization ability. After 300 h onstream, the average olefins content in the gasoline was reduced from 56.3 vol% to about 20 vol%, the aromatics (C7–C9 aromatics mainly) and paraffins contents in the product were increased from 11.6 vol% and 32.1 vol% to about 20 vol% and 60 vol% respectively. The ratio of i-paraffins/n-paraffins also increased from 3.2 to 6.6. The yield of gasoline was obtained at 97 wt%, while the Research Octane Number (RON) remained about 90.  相似文献   

8.
以酸性多孔ZSM-5沸石(HZSM-5-M)和高比表面积的氧化硅(SiO2)为载体,采用等体积浸渍法制备了负载Ni2P催化剂(Ni2P/HZSM-5-M和Ni2P/SiO2),对比研究了它们在苯乙炔选择性加氢反应中的催化性能。采用XRD、N2吸附-脱附、NH3-TPD、H2-TPR、SEM和TEM对载体及其负载的Ni2P催化剂进行了表征。催化剂活性结果为:当反应时间为2 h,苯乙炔在Ni2P/HZSM-5-M催化剂的转化率为98.5%,而在Ni2P/SiO2催化剂上仅为45.6%。说明Ni2P/HZSM-5-M催化剂的加氢活性显著高于Ni2P/SiO2催化剂。这是因为,与Ni2P/SiO2催化剂相比,在Ni2P/HZSM-5-M催化剂上形成了小颗粒的Ni2P活性相。同时,Ni2P/HZSM-5-M催化剂的活性具有良好的重复性。  相似文献   

9.
以浸渍法制备不同负载量的Ca/HZSM-5催化剂,并采用NH_3-TPD和Py-IR对改性前后样品进行表征。在连续流动固定床反应装置上,详细考察了其甲醇制烯烃(MTO)的催化性能。催化评价结果表明,Ca改性提高了催化稳定性与低碳烯烃(C_2~=~C_4~=)选择性,但负载过多的Ca不利于甲醇制烯烃反应,Ca负载量存在最佳值,约为6%。关联评价结果与酸表征数据,发现HZSM-5上几乎所有的B酸与Ca物种作用后,催化性能达到最佳。通过与Na/HZSM-5和2Ca/1Na/HZSM-5催化性能的比较,探讨了Ca在催化反应中的作用,提出Ca物种与B酸结合形成了催化活性中心,参与甲醇的催化转化。  相似文献   

10.
对HZSM-5分子筛改性是提高甲醇制汽油反应催化性能的有效方式,分别用非金属、稀土金属及水热处理对HZSM-5分子筛催化剂进行改性,考察改性方法对HZSM-5分子筛酸性、孔径和比表面积等性质的影响,同时对改性HZSM-5分子筛催化剂催化甲醇制汽油的汽油收率和芳烃含量等指标进行比较。结果表明,经La改性的催化剂可明显提高汽油收率,水热处理的催化剂反应产物汽油中的均四甲苯含量大幅增加。改性催化剂对反应的影响可一定程度验证相关理论。  相似文献   

11.
制备Ni改性及水热改性HZSM-5分子筛催化剂,并在固定床连续微型反应装置上考察对正辛烷芳构化反应的催化性能。采用低温氮吸附、NH3-TPD和FT-IR等方法对催化剂进行表征。结果表明,随着Ni含量的增加,催化剂B酸逐渐减少,L酸逐渐增多,总酸呈现出先减少后增多的趋势,适宜的Ni含量能够促进芳构化反应。随着水热温度的提高,B酸减少,总酸增多,催化剂的芳构化活性逐渐降低。催化剂活性与表面酸性有关,尤其是与强酸量有关,强酸量下降,芳构化能力下降。  相似文献   

12.
Selective catalytic reduction (SCR) of NO with methane in the presence of excess oxygen has been investigated over a series of Mn-loaded sulfated zirconia (SZ) catalysts. It was found that the Mn/SZ with a metal loading of 2–3 wt.% exhibited high activity for the NO reduction, and the maximum NO conversion over the Mn/SZ catalyst was higher than that over Mn/HZSM-5. NH3–TPD results of the catalysts showed that the sulfation process of the supports resulted in the generation of strong acid sites, which is essential for the SCR of NO with methane. On the other hand, the N2 adsorption and the H2–TPR of the catalysts demonstrated that the presence of the SO42− species promoted the dispersion of the metal species and made the Mn species less reducible. Such an increased dispersion of metal species suppressed the combustion reaction of CH4 by O2 and increased the selectivity towards NO. The Mn/SZ catalysts prepared by different methods exhibited similar activities in the SCR of NO with methane, indicating the importance of SO42−. The most attractive feature of the Mn/SZ catalysts was that they were more tolerant to water and SO2 poisoning than Mn/HZSM-5 catalysts and exhibited higher reversibility after removal of SO2.  相似文献   

13.
MCM-22沸石催化剂的苯与长链烯烃烷基化性能   总被引:3,自引:0,他引:3  
用NH3-TPD法研究了4种不同硅铝摩尔比的MCM-22沸石的酸性质,在常压间歇式反应器中考察了它们在苯与长链烯烃烷基化反应中的催化性能,并与HY和HZSM-5沸石催化剂进行了比较。实验结果发现MCM-22的催化活性与其强酸量有一致的关系,与其硅铝摩尔比无对应关系;MCM-22的活性比HY低,但对2-P的选择性远远高于HY,这说明了MCM-22对2-P具有形状选择作用。  相似文献   

14.
采用低温老化、高温晶化两步法在Na2O-Al2O3-SiO2-四丙基氢氧化铵(TPAOH)-H2O体系中水热合成了纳米ZSM-5分子筛。用BET、N2吸/脱附曲线和NH3-TPD等手段对负载Zn的纳米HZSM-5分子筛结构和酸性进行了表征。结果表明,与微米Zn/HZSM-5分子筛催化剂相比,所制备的纳米Zn/HZSM-5催化剂比表面积明显增大,总酸量和弱酸量增加;在丙烷芳构化反应中,纳米Zn/HZSM-5分子筛具有更佳的催化活性、稳定性和芳烃选择性。  相似文献   

15.
This article describes a novel citric acid treatment method for realuminating dealuminated HZSM-5 zeolite and its application in enhancing the performance of the zeolite derived FCC gasoline hydro-upgrading catalysts. A series of modified HZSM-5 zeolites were prepared by streaming and/or acid treatments and the influences of the different modification methods on the acidity, pore structure and catalytic performance of the modified HZSM-5 zeolite supported catalysts were compared in the present investigation. The results showed that compared with the single HCl or citric acid treatment, the steaming treatment, and the steaming/HCl treatments, the citric acid treatment after steaming exclusively increased the amount of framework Al species due to its realumination effect on the steamed HZSM-5 zeolite. This realumination effect of the citric acid treatment could optimize the ratio of framework Al to extra-framework Al in the steamed HZSM-5 zeolite and thus greatly improve the acidity distribution and pore structure of the corresponding catalyst. The catalytic performance assessments of the different zeolite supported catalysts for FCC gasoline hydro-upgrading revealed that the catalyst supported on the steaming/citric acid treated HZSM-5 zeolite had balanced initial and long-term activities in hydrodesulfurization, hydroisomerization and aromatization, high liquid yield and improved gasoline road octane number. The superior catalytic performance of the catalyst could be closely related to its suitable ratio of framework Al to extra-framework Al achieved by the combinational use of the steaming dealumination and the citric acid realumination, fully demonstrating the effectiveness of the steaming and citric acid treatments in optimizing the physicochemical properties and catalytic performance of HZSM-5 zeolite supported catalysts.  相似文献   

16.
This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid(SCF)conditions.The precious metal catalysts Pd,Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs.This is reportedly due to their favourable catalytic activity during the process including hydrotreating,hydrocracking,and esterification,which leads to improvements in liquid yield,heating value,and pH of the upgraded bio-oil.Due to the costs associated with precious metal catalysts,some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol.On the other hand,SCFs have been effectively used to upgrade crude bio-oil without a catalyst.Supercritical methanol,ethanol,and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis,respectively.  相似文献   

17.
Mo/HZSM-5 catalysts show high reactivity and selectivity in the activation of methane without using oxidants. Mo/HZSM-5 catalysts with Mo loading ranging from 0 to 10% were prepared by impregnation with an aqueous solution of ammonium heptamolybdate (AHM). The samples were dried at 393 K, and then calcined at different temperatures for 4 h. The interaction between Mo species and NH4ZSM-5 zeolite was characterized by FT-IR spectroscopy, differential thermal analysis (DTA) and temperature programmed decomposition (TPDE) and NH3-TPD at different stages of catalyst preparation. The results showed that if Mo/HZSM-5 catalysts were calcined at a proper temperature, the Mo species will interact with acid sites (mainly with BrØnsted acid sites) and part of the Mo species will move into the channel. The Mo species in the form of small MoO3 crystallites residing on the external surface and/or in the channel, and interacting with BrØnsted acid sites may be responsible for the methane activation. Strong interaction between Mo species and the skeleton of HZSM-5 will occur if the catalyst is calcined at 973 K. This may lead to the formation of MoO 4 2– species, which is detrimental to methane activation.  相似文献   

18.
Nanoscale HZSM-5 zeolite was hydrothermally treated with ammonia water at different temperatures and then loaded with La2O3 and ZnO. The parent and the modified nanoscale HZSM-5 catalysts were characterized by SEM, NH3-TPD, IR and XRF. The performance of the modified HZSM-5 catalysts for FCC gasoline upgrading was evaluated in a fixed bed reactor in the presence of hydrogen. The results indicated that the modified catalyst which was hydrothermally treated at 400 °C exhibited excellent aromatization activity, isomerization activity and higher ability of reducing olefin content in FCC gasoline. Under the given reaction conditions, the olefin content in FCC gasoline could be decreased from 49.6 to 8.1 vol.%. The catalytic performance of the modified nanoscale ZSM-5 catalyst hardly changed within 300 h time on stream, and the research octane number (RON) of gasoline was preserved.  相似文献   

19.
利用管式炉热解装置进行HZSM-5在线共催化热解玉米秸秆/高密度聚乙烯过程中的循环和再生利用实验,对玉米秸秆进行酸洗预处理,考察原料酸洗预处理对HZSM-5催化性能的影响。采用GC-MS(气相色谱-质谱联用仪)对生物油的化学组成进行分析,并对反应前、反应后以及再生催化剂进行TG(热重分析)、ICP-MS(电感耦合等离子体发射光谱仪)、SEM/EDS(场发射扫描电镜)、BET、NH3-TPD(程序升温脱附技术)等表征分析。研究表明,HZSM-5催化玉米秸秆/高密度聚乙烯热解的主要产物为芳烃,随着催化剂重复利用次数的增加,芳烃含量逐渐降低,催化剂的比表面积、孔容、酸性等也随之降低,说明催化剂的活性逐渐降低;原料经酸洗预处理后有利于热解中间体的生成,加速了催化剂的结焦失活速率;催化热解酸洗玉米秸秆/高密度聚乙烯的催化剂经焙烧再生后其活性基本恢复至原有水平,而催化热解未处理玉米秸秆/高密度聚乙烯的催化剂再生后其活性有所降低,碱/碱土金属在HZSM-5催化剂上发生累积,从而引起酸性位点“中毒”失活,而原料经酸洗预处理后可有效降低催化剂上碱/碱土金属的累积量,有利于延长催化剂的使用寿命。  相似文献   

20.
Two kinds of HZSM-5 zeolite (SiO2/Al2O3 = 50,300) were introduced into the STD (syngas-to-DME) reaction and the double-function catalysts containing CuO/ZnO/Al2O3 and HZSM-5 were investigated by activity evaluation and NH3-TPD. It was found that the acidity of HZSM-5 played a critical role in the performance of STD catalyst, and an appropriate acidic amount was required to obtain the best activity of STD catalyst; more and less acidic amount were both unfavorable for DME yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号